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Abstract. Quantization is a method of transforming a large dataset into a
smaller, discrete dataset. In this paper, we perform quantization on a large
set of data and test decision rules on the data. We attempt to empirically
determine the optimal number of quantizing levels for our quantizer. We show
that running a classification experiment with a discrete Bayes decision rule yields
a 99.8% accuracy rate, while other decision rules such as nearest neighbor, naive
Bayes, Gaussian, and logistic regression yield lower classification accuracy rates.

1. Introduction

While many algorithms are built to run on discrete datasets or are more efficient
on discrete datasets, in real-world examples we often find ourselves working with
a large number of continuous data points. With this in mind, methods by which
we transform continuous datasets into discrete datasets constitutes a large field
of study [5]. There are multiple methods from which to approach this problem
– a common method seen is binning the data uniformly [5]. However, when a
classifier is present, we would like to analyze a method which is more tailored for
our specific dataset in order to increase the learning accuracy of a classifier on
a dataset. Furthermore, learning methods such as a discrete Bayes decision rule
require discrete sets of data points [9]. Quantization is a process by which we
take some large dataset and map it to a smaller, discrete dataset. Any method by
which we perform this quantization is called our quantizer. While the quantization
method had existed for many decades, it fell out of favor with researchers for many
years, only to resurface again more recently [8].

During the Cold War the US was in the process of planting sonar arrays in
the oceans to pick up the sounds created by ships. The president wanted to keep
track of where exactly each country’s ships were located, and where they were
heading. At the time, the Russians did not have high-performance computing,
but had propellers on their submarines which were quieter than our submarines,
even with our superior computing power. This is because they had a method for
solving the massive linear equations in their electrical signal processing based on
quantization [4], [8].
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Quantization rose back to interest in the 1980s after research into algorithms
and coding structures in the 1970s made implementations of quantization on big
data more feasible [11]. It continued its comeback into the 1990s when people
began making exchanges on the Internet via routers, switches, and super switches.
Furthermore, in the 90s, the FBI wished to implement a digital storing method for
the millions of fingerprint records they had been keeping since 1924. The FBI’s
Criminal Justice Information Services Division followed an approach for storing
their fingerprint images which is based on scalar quantization [2]. More recently,
quantization found use after the 2007-2008 stock market crash in providing more
accurate measures of risk evaluation [1].

In this paper we study the effects of quantization on a large dataset by first
quantizing our data, then training discrete Bayes decision rule to assign class
values. We compare the classification accuracy of this Bayes decision rule on
quantized data to the classification accuracy of the Gaussian decision rule, naive
Bayes, support vector machine, logistic regression, decision tree, and the nearest
neighbor rule.

1.1. Outline of Paper. In Section 2 we outline the project. Subsection 2.1 gives
an overview of the quantization method and a description of how we calculated our
Bayes decision rule, trained our Bayes decision rule, and calculated a probability of
correct identification. In Subsection 2.2 we discuss the pros and cons of alternative
decision rules that could be used in place of a Bayes decision rule.

Next, in Section 3 we discuss our experimental results. Our experimental results
on quantization with a Bayes decision rule were gathered in three stages:

(1) In Subsection 3.2 we describe our experiment on the first dataset where we
train the quantizer and calculate a Bayes decision rule.

(2) In Subsection 3.3 we describe our experiment on the second dataset where we
choose the number of quantization levels which yields the highest probability
of correct identification.

(3) Lastly, in Subsection 3.4 we describe our experiment on the third dataset,
where we determine the probability of correct identification using our previous
optimizations.

Section 4 summarizes our results running the same experiment using alternate
decision rules, namely: the Gaussian decision rule, Naive Bayes, Support Vector
Machine, Logistic Regression, Decision Tree, and the Nearest Neighbor Rule.

2. Technical

2.1. Quantization. In this section, we describe the process of applying the quan-
tization method of discretization on a real-valued dataset. Using quantization, we
transform a set of continuous variables which can take on a quite large number
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of values into a set of discrete variables which take on a much smaller number of
values [13].

Say we have a collection of N -dimensional data points, where each data point
has an assigned class c0 or c1. We would like to apply a decision rule on this data
in order to determine each data point’s classification. Our idea is to split our data
points into L distinct bins along each component, leaving us with a total of LN

possible total bins in our measurement space [9]. We will call our collection of
bins B. From here, we apply a decision rule and run tests on this decision rule’s
accuracy.

More precisely, to quantize our data we defined a function called a quantizer :

Definition. A quantizer q is a monotonically increasing function that takes in a
real number and produces a non-negative integer between 0 and L− 1, where L is
the number of quantizing levels.[9]

We define the quantizing interval as follows:

Definition. The quantizing interval Q` associated with the integer ` is defined by

Q` = {x : q(x) = `} [9].

When we are working with n-dimensional data, a data point Z = (z1, z2, . . . , zn)
is quantized as (q1(z1), q2(z2), . . . , qn(zN)), where qi is the quantizer for the Nth
dimension. To determine our initial quantizing interval boundaries, consider a
set of K N -dimensional data points Z1, Z2, . . . , ZK . Denote the kth tuple by
Zk = (zk1, zk2, . . . , zkN). Consider the values of the nth component for each of the
K data points, z1n, z2n, . . . , zKn. Arrange these values in ascending order, denoted

z(1)n, z(2)n, . . . , z(K)n.

We wish to split our data into L bins along each component, each of which contains
an equal number of data points along that component. Define the left interval
quantizing boundaries along the nth component by:

Z(1)n Z(K
L
+1)n

· · · Z( `K
L

+1)n
· · · Z( (L−1)K

L
+1)n Z(K)n

In other words, the `th quantizing interval [cn`, dn`) for the nth component is given
by

[cn`, dn`) =
[
z( (`−1)K

L+1 )n, z( `K
L+1)n

)
[9].

Applying this method on each dimension gives us our quantizing bins, indexed
by the left interval boundary in each component, for a total of LN bins. For
clarity, pictured below is a sample quantization in N = 2 dimensions with L = 7
quantizing intervals for a total of 72 bins.
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After applying our quantizer q on our K data points, we now wish to compute
the maximum likelihood estimate of the probability for each bin. For a quantized
tuple q(Zk) = (q1(zk1), q2(zk2), . . . , qn(zkN)), let a(q(Zk)) denote its bin address.
For a collection B of b bins, let tm denote the number of quantized tuples in bin
m and let pm denote the maximum probability estimate of a data point falling in
bin m. More precisely, we have:

tm = #{k : a(q(Zk)) = m}, pm =
tm
K
.

2.1.1. Applying a Discrete Bayes Decision Rule. We now want to apply a discrete
Bayes decision rule on our quantized values in order to classify our data. Pick
as sample set of K ′ data points from the set of K total data points on which
to train the classifier. So, our sample set of points is {Z1, Z2, . . . , ZK′}. Say the
total number of bins after quantization is M . Calculate the quantizer and the
probability associations pC , and then calculate a Bayes decision rule maximizing
expected gain [9].

A discrete Bayes decision rule is a decision rule which satisfies Bayes theorem.
Let c denote the class of a data point and let m denote the bin of the data point.
Bayes theorem states the following:

P (c|m) =
P (c)P (m|c)

P (m)
.

Therefore, given a data point which falls into either class c0 or c1, we use our
quantizer to compute m, and apply a decision rule to determine P (c0|m) and
P (c1|m). The assigned class of the data point is whichever probability is higher.
Observe that P (m) = pm was computed above.

To compute P (m|c), we set up a table. Every row corresponds to a bin, and
the columns correspond to classes c0 and c1. For column c and row m, we place
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in the table P (m|c), computed by looking at all of the data points in class c and
setting

P (m|c) =
number of class c data points in bin m

total number of class c data points
.

The class probability is simply computed as

P (c) =
number of class c data points

total number of data points
.

This defines our discrete Bayes decision rule.
Say a data point has true class ci and assigned class cj. Let PrTA(ci, cj) denote

the probability that our data points have true class ci and assigned class cj. To
compute the probability of correct identification under our decision rule, we first
construct the confusion matrix :

Assigned Class
c1 c2 · · · cj · · · c`

True Class

c1
c2
...

. . .
...

...
ci · · · PTA(ci, cj) · · ·
...

...
...

. . .
c`

The probability of correct identification, PC , occurs by adding up the diagonal
entries of the confusion matrix [7]:

PC =
∑̀
i=i

PTA(ci, ci).

2.1.2. Optimizing the Quantizer Boundaries. After applying a discrete Bayes de-
cision rule, we wish to optimize our quantizer boundaries. In order to optimize our
quantizer boundaries, we apply the following greedy algorithm. Let b1n, b2n, . . . , bLn
denote the quantizing bins for dimension component n, 1 ≤ n ≤ N . Repeat the
following steps until there is no change [9]

• Randomly choose a component n and a quantizing interval `;
• Randomly choose a small perturbation δ;
• Randomly choose a small integer M , such that we have no collision with

our neighboring boundaries;
• Set bNEW`n = b`n − δ(M + 1);
• For (m = 0;m ≤ 2M ;m+ +):

– bNEW`n = bNEW`n + δ
– Compute new probabilities
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– Recompute Bayes rule
– Save expected gain

• Replace b`n by the value associated with the highest expected gain

2.1.3. Testing the Decision Rule. After quantizing our data, applying a discrete
Bayes decision rule, and optimizing the quantizer boundaries, we are ready to test
our classification method for accuracy. On a new set of data points, run the entire
experiment again to compute an unbiased probability of correct identification PrC .

2.2. Comparisons With Other Decision Rules.

Gaussian. A Gaussian classifier applies the Maximum A Posteriori (MAP) rule
(where we classify a point x choosing argmaxCj

P (x1, ..., xd|Cj)) and models class-

conditional distributions P (x1, ..., xd|Cj) as multivariate Gaussian distributions.

Naive Bayes. The concept of Naive Bayes classification is based on Bayes The-
orem and a strong (naive) assumption of independence assumption between the
features. The assumption that features are independent does simplify the classi-
fication task dramatically, since it allows the class conditional densities P (xk|Cj)
to be calculated separately for each variable, i.e., it reduces a multidimensional
task to a number of one-dimensional ones. Following Bayes rule:

P (x1, ..., xd|Cj) ∝ P (x1, ..., xd|Cj)P (Cj)

Since Naive Bayes assumes that the conditional probabilities of the independent
variables are statistically independent we can decompose the likelihood to a prod-
uct of terms:

P (x1, ..., xd|Cj) ∝
d∏

k=1

P (xk|Cj)

The posterior becomes:

P (Cj|x1, ..., xd) ∝ P (Cj)
d∏

k=1

P (xk|Cj)

Support Vector Machine. A Support Vector Machine (SVM) is a discriminative
classifier formally defined by a separating hyperplane. Among the possible sep-
arating hyperplanes, SVMs find the hyperplane that gives the largest minimum
distance to the training examples. SVMs can efficiently perform a non-linear clas-
sification using what is called the kernel trick, implicitly mapping their inputs into
high-dimensional feature spaces.
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Logistic Regression. Logistic regression fits a logistic curve to the relationship
between data and classes. Logistic curve is an S-shaped or sigmoid curve that can
be expressed, in an extended form, as:

y =
1

1 + e−(α+βx)

Logistic regression fits α and β, using the method of maximum likelihood of ob-
serving the sample values. Maximum likelihood will provide values of α and β
which maximize the probability of obtaining the data set.

Decision Tree. The decision tree is a natural model of learning. The training
process builds a binary tree, where each internal node represents a yes/no question
we can ask on a data point. When we want to classify a point x = (x1, ..., xd) we
start from the root and follow the path generated by the answers to the questions.
Each leaf in the decision tree represents a class, thus the leaf at the end of x’s
path determine how we classify it. Questions may ask whether a feature xi or a
linear combination of all features is above a certain value. At each level questions
are meant to maximize the information gain.

Nearest Neighbor Rule. The Nearest Neighbor (NN) Rule is an extremely simple
non-parametric classifier. It assumes that data are represented in a metric space.
Given a training set the algorithm makes no generalization about it. In order to
predict the class of a point x, it uses the class of the point x′ in the training set
that has minimum distance from x.

Implementation. We implemented all the comparison classifiers in Python. While
we had to implement Naive Bayes from scratch, the other classifiers could be used
off the shelf from the scikit-learn package.

3. Experimental Results on Quantization

Consider a 10, 000, 000 point dataset of 5-dimensional data points, each with
an associated class, c0 or c1. Let L denote the number of quantizing intervals.
Observe that after quantizing with L intervals on 5-dimensional data points, we
will have L5 bins. Call the collection of bins B, where |B| = L5.

For each experiment we selected a number of quantizing intervals L. Numbers
chosen were L =(FILL THIS IN).

For each L, we began our experiment by training the quantizer on our first
3, 333, 333 data points. We then estimated the bin probabilities and calculated
our Bayes decision rule, as outlined in Section 2. From here, we used the second
3, 333, 333 data points to estimate a confusion matrix in order to calculate the
probability of correct identification with L quantizing intervals, denoted pC(L).

We repeated this experiment while varying the value of L and recording which
value thus far had given the highest probability of correct identification pC(L).
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Once we identified the highest value for pC(L), we stored this value of L as LBEST .
The final step in our experiment was to apply our discrete Bayes decision rule on
the last 3, 333, 334 data points with LBEST quantizing intervals to determine an
unbiased estimate of pC(LBEST ).

3.1. The Dataset. The global dataset provided is composed of 107 rows in total.
Each row corresponds to a labeled five-dimensional point x ∈ [0, 1]5. The label is
either 0 or 1, respectively denoting classes c0 and c1 which x can belong to.

We partitioned the dataset differently for the quantizer and the comparison
classifiers. For classification using the quantizer we divided the dataset in subsets
containing one third of the rows. We used the first, second and third subset
respectively as training, development and testing dataset. For the comparison
classifiers we used the first two thirds of the data for training and the remaining
third for testing.

Figures 1 and 2 provide a visual overview of the data, respectively in one and
two dimensions. Figure 1 shows the distribution of each component of the data.
Figure 2 shows the joint distribution for every possible pair of components.
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Figure 1. Distribution of values for each of the five components
grouped by classes.
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Figure 2. Distribution of values for each possible pair of components. The labels V1,...,V5 represent
the five components. Plots for points in class 0 and 1 are respectively in the left and right frames.
In each frame, a plot in row i and column j has component i on the y axis and component j on the
x axis. Position (1, 1) corresponds to bottom left
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Each component is distributed almost uniformly, except for a few ”patches”
with slightly higher or lower distribution (Figure 1). For each component, the
distribution of the two classes is roughly the dual of the other withing patches.
For example, notice Component 2 in Figure 1: for any value within the central
patch, points of Class 0 increase in density roughly as much as points of Class 1
decrease in density. The joint distribution of pairs of components (Figure 2) shows
that points are organized in rectangular patches of higher or lower densities. Also
in this case we can observe some duality: if a rectangular patch shows higher
density for one class, it will show lower density for the other.

3.2. Training the Quantizer and Calculating a Decision Rule.

3.3. Determining Number of Quantizing Intervals on Dataset 2. Note
that if our number of bins M is too large, we will suffer from memorization and
over-fitting, while if M is too small we will suffer from over-generalization and
under-fitting [9]. Thus our goal in determining the number of quantizing intervals
is to find a happy medium which avoids both of these pitfalls.

3.4. Determing Probability of Correct Identification on Dataset 3.

4. Experimental Results on Other Decision Rules: A Comparative
Analysis

Figure 3 summarizes the accuracy results for the comparison classifiers. The
Decision Tree classifier achieves an almost perfect accuracy of 99.93%. The Nearest
Neighbors is the second best performing classifier with around 87.86% accuracy.
Other classifiers achieve less than 60% accuracy.
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Figure 3. Accuracy results for comparison classifiers.
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What follows are a few comments on the results above in light of the charac-
teristics of the dataset (see Subsection 3.1). Although this final project explicitly
required decision trees for comparison, this type of classifier would have been a
natural choice in a domain with data similar to those provided. In fact, even basic
types of decision trees find rectangular boundaries aligned with axis (see Figure 2).
On the other hand, a classifier like a Naive Bayes would have been a poor choice.
In fact, from Figures 1 and 2 we can see that the independence assumption does
not hold. For example notice the patch [0, 0.4]× [0, 0.2] for class 0 and components
1 and 2 (i.e. plot at row 1 and column 2 in Figure 2). The density of class 0 points
in that patch is nearly 0. But taking the respective projections of a point in the
patch and computing the product of the separate distributions for components 1
and 2 would give us something close to 25% (see first two plots in Figure 1).

DecisionTree
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Figure 4. Training and testing time for comparison classifiers (in
seconds)

5. Conclusion

We are the best team with the best paper 100% for everyone goodbye
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[13] Michal Skubacz & Jaakko Hóllmen: Quantization of continuous input variables for binary
classification. Intelligent Data Engineering and Automated Learning - IDEAL 2000, Volume
1983 of the series Lecture Notes in Computer Science (2002), pp 42-47.

[14] Andrew K. C. Wong & David K. Y. Chiu: Synthesizing Statistical Knowledge from Incom-
plete Mixed-Mode Data. IEEE Transations on Pattern Analysis and Machine Intelligence,
Vol. PAMI-9, No. 6 (1987), pp. 796-805.

http://arxiv.org/abs/1503.01754
http://arxiv.org/abs/1503.01754
http://haralick.org/ML/discrete_bayes.pdf
http://haralick.org/ML/discrete_bayes.pdf
http://haralick.org/ML/quantization.pdf

	1. Introduction
	1.1. Outline of Paper

	2. Technical
	2.1. Quantization
	2.2. Comparisons With Other Decision Rules
	Implementation

	3. Experimental Results on Quantization
	3.1. The Dataset
	3.2. Training the Quantizer and Calculating a Decision Rule
	3.3. Determining Number of Quantizing Intervals on Dataset 2
	3.4. Determing Probability of Correct Identification on Dataset 3

	4. Experimental Results on Other Decision Rules: A Comparative Analysis
	5. Conclusion
	References

