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Abstract. When analyzing distances between points in high dimensional spaces,
the data points become sparse, massively decreasing the efficiency of analyza-
tion techniques such as the nearest neighbor rule and clustering. In this paper,
we use experimental methods to verify that in high-dimensional spaces, the
distance between the closest and furthest points from a uniform distribution
becomes similar, and show that the classification accuracy can vary wildly for
perturbed data. Next, we show that even points generated from the Gaussian
distribution fall prey to the curse of dimensionality, becoming sparse in high di-
mensions. We look at the distance metrics L1, the city block metric; the metric
L2, the Euclidean metric; and L∞, the maximum distance metric.

1. Introduction

A classical problem addressed by machine learning is that of finding the nearest
neighbor to a point. The applications of this are vast, including data mining,
pattern recognition, machine learning, the nearest-neighbor method, similarity
indexing structures, image completion, and data compression [1], [2], [10]. The
larger the dimension of a space, the more information we receive about each point.
It would be easy to assume that with more information, we are able to gain
more information about the distances between points as the dimension increases.
However, we find that exactly the opposite happens! As Aggarwal and Reddy
explain in [2]:

conventional distance measures were generally designed for many
kinds of low-dimensional spatial applications which are not suitable
for the high-dimensional case. While high-dimensional data contain
more information, they are also more complex. Therefore, naive
methods will do worse with increasing dimensionality because of
the noise effects of locally irrelevant attributes.

In high dimensional spaces, things which seem intuitive in one- or two-dimensional
spaces become complex and bizarre. For example, the volume of a high dimen-
sional sphere goes to zero as the dimension increases. However, for a sphere of
radius R and a sphere of radius 1.1R, the ratio of the volume formed between
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these spheres goes to 1 as the dimension N increases [7]. In this way we see that
the volume of the high-dimensional sphere is hugging the boundary. The larger
the dimension of the space, the closer together the distance between the nearest
neighbor and the farthest neighbor becomes [3]. This problem of counterintuitive
behaviors in high-dimensional spaces was coined by Richard Bellman as “the curse
of high dimensionality” [4].

In addition to the poor performance seen in high dimensional spaces with the
distance between the nearest and farthest neighbors, we also run into problems
with classification. Classification problems appear in a broad range of applications,
including web-document classification and discrimination between cancerous and
non-cancerous cells. However, the curse of dimensionality remains, and we see
that standard classification methods in high dimensions retain poor performance
[12].

In this paper, we first provide a background of technical results in the field and
define the terminology in the paper. We next provide experimental results, where
we run three experiments:

(1) First we analyze the nearest neighbor problem in high dimensions to empir-
ically observe these theoretical results. We choose a number of points, K,
and run the experiment on a range of dimensions, N . We observe the average
ratio between the nearest neighbor and farthest neighbor from a point as the
dimension N increases.

(2) Next we run an experiment on classification accuracy in high dimensions. We
generate a set of K of K points and a set M of M points, randomly assign
each pointM in a class, and set the true class of each point in K to the class of
its nearest neighbor inM. We then perturb the points inM, set the assigned
classes of the points in K similarly, and observe the relation between the true
classes and assigned classes of the data.

(3) Finally, we perform an analysis of the nearest neighbor problem in high dimen-
sions on random points sampled from the normal distribution. This requires
normalization of our data to the unit inteval [5]. Again, we choose a number of
points, K, and run the experiment on a range of dimensions, N . We observe
what happens to the value of the average ratio between the nearest neighbor
and farthest neighbor to a point as the dimension N increases and note that
when vectors whose components are independentN(0, 1) are divided by the L2

length, they become uniformly distributed on the unit hypersphere.

Lastly we have a summary and conclusion of all of these results.
Appendix A contains graphs of the ratio between nearest neighbor and farthest

neighbor in dimension N when our data points have been drawn from the uniform
distribution, the results from the first experiment. Appendix B contains graphs
of the accuracy rate of the assigned classification, the results from the second
experiment. Appendix C contains graphs of the ratio between nearest neighbor
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and furthest neighbor in dimension N when our data points have been randomly
drawn from the standard distribution, the results from the third experiment.

2. Technical

The nearest-neighbor method uses a set of training data points with assigned
classes, along with a distance metric to assign classes to new data points. More
concretely, in the nearest-neighbor method we have a measurement space X, a
distance metric d on X, and a set of classes {c1, c2, . . . , cn}. We take a set of
training data, which consists of pairs of points and classes 〈(x1, c1), . . . , (xN , cN)〉,
where the ci are not necessarily unique. The nearest-neighbor rule takes a new
point, x, and assigns it to the class cm such that the following holds:

d(x, xm) ≤ d(x, xi)

for all i [8].
We have our choice of distance metrics for this method, the choice of which

depends on what we are trying to observe with our data and the meaningfulness
of the metric in our measurement space. In this paper, we focus on three metrics:
the city block metric, the Euclidean metric, and the maximum distance metric.

Let X be an N -dimensional measurement space, and let x = (x1, x2, . . . , xN)
and y = (y1, y2, . . . , yn) be points in X. The city block metric, L1 : X ×X → R,
is given as follows:

L1(x,y) =
N∑
i=1

|xi − yi|.

The Euclidean metric, L2 : X ×X → R, is given by

L2(x,y) =

√√√√ N∑
i=1

(xi − yi)2

and the maximum distance metric, L∞, is given by

L∞(x,y) = max
1≤i≤N

{|xi − yi|}.

Because of the sparseness of data in high-dimensional spaces, our normal methods
for analyzing this data become meaningless in high dimensions, and results for
the nearest-neighbor method are one clear example of this phenomenon [11]. The
nearest-neighbor rule relies upon our selection of a distance metric, increasing the
importance of the behavior of these metrics in high dimensions. It is important
that we select the metric for analyzing our data in a way that gives us a meaningful
outcome. In low dimensions, the Euclidean metric is standard as giving the most
meaningful results on distances between points. However, due to the curse of
dimensionality, it is important that we run tests in high dimensions to determine
what the most meaningful metric will be in these high dimensions.
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Theoretical results confirm the curse of dimensionality. The Lk norm is subject
to the curse of dimensionality for all values of k, including the metrics we are
studying, k = 1, 2, and ∞. As discussed by Aggarwal, Hinneburg, and Keim,
the meaningfulness of the values given by the distance metrics Lk worsens as k
increases. More specifically, in a space of dimension N under distance metric
Lk, the difference between the point with maximum distance and the point with
minimum distance increases at a rate of N1/k−1/2. This holds regardless of the
distribution we choose for our data points. We see that when k = 1 this diverges
to infinity; when k = 2 this is bounded by 1; and for k = ∞ this converges
down to 0. Therefore, in high dimensions, the L1 norm is preferable to the L2

norm, which is preferable to the L∞ norm. All in all, the Lk metric provides the
most meaningful results for low dimensions, and quickly looses meaningfulness
for dimensions greater than or equal to 3 [1]. Aggarwal, Hinneburg, and Keim
conclude that

for dimensionalities of 20 or higher it is clear that the Manhattan
distance metric provides a significantly higher relative contrast than
the Euclidean distance metric with very high probability.

In empirical experiments, we expect these trends to hold. If these theoretical
results hold true empirically, the information we receive from a nearest neighbor
analysis in high dimensions will lack meaning. Instead, we would see a need to
modify the methods with which we analyze information which has high dimensions.
Therefore, it is important that we run empirical analyses to understand the curse
of dimensionality in high dimensions on a practical level.

In addition to measuring distance, and important aspect of the nearest-neighbor
method is that of classification. Consider a set of classes {c1, c2, . . . , c`}. Let
PTA(ci, cj) denote the probability that the true class of a data point is ci and the
class assigned by a decision rule is cj. The confusion matrix is given as follows [6]:

Assigned Class
c1 c2 · · · cj · · · c`

True Class

c1
c2
...

. . .
...

...
ci · · · PTA(ci, cj) · · ·
...

...
...

. . .
c`
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The probability of correct identification, PC , occurs by adding up the diagonal
entries of the confusion matrix [6]:

PC =
∑̀
i=i

PTA(ci, ci).

Due to the curse of dimensionality,

an increasing noise from irrelevant attributes may cause errors in
the distance representation, so that it no longer properly represents
the intrinsic distance between data objects [2].

Because of this, we will expect to see that the nearest neighbor method, and hence
our assignment of classes, becomes meaningless due to the lack of information given
to us by our distance metric of choice.

Consider now the Gaussian distribution. The fraction of a random sample of
points which falls into a sphere of radius 1.65 is 90% in dimension one. However,
as the dimension n increases, this fraction decreases, and is all the way down to
below 1% when the dimension is greater than ten [8]. We see that in N dimensions,
the Gaussian has density function

p(x) =
1

(2π)N/2σN
exp

(
−|x|

2

2σ2

)
where σ is the variance [9]. When σ = 1, within the unit sphere, integrating the
probability density function will yield very little mass [9]. Therefore, even with
N -dimensional points sampled from the Gaussian distribution, we run into the
problem of sparseness of our data points.

3. Experimental Results

3.1. Maximum and Minimum Distance Experiment. Experimental results
on high-dimensional spaces further verify the aforementioned “curse of dimension-
ality.” First, consider a collection K of K N -dimensional points. Let Dmin(x)
be the distance of the closest point from x in our collection of K points under
distance metric D, and let Dmax(x) be the distance of the farthest point. We
want to analyze the ratio

r(x) =
Dmin(x)

Dmax(x)

as the dimension N increases. For each K, let r denote the average value of the
ratios r(x),

r =

∑
x∈K r(x)

K
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We also find the standard deviation for each average,

σ =

√
1

K

∑
x∈K

(x− r).

For each metric L1, L2, and L∞, we fix K and plot the average value r as a
function of the dimension N with standard deviation bars around each average.
We use values N = 1, 2, . . . , 10 and N = 10, 20, . . . , 100.
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First, consider the city-block metric L1.
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Figure 1. K = 50
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Figure 2. K = 500
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Figure 3. K = 5000
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Figure 4. K = 10000

See Figures 49, 53, 55, and 56 in Appendix A for larger versions of these graphs,
along with graphs for additional values of K. Here we see that while the ratio
r does tend towards 1, it increases more slowly when we have a larger dataset.
However, performance of this metric is not ideal, and already with the L1 metric
we see the effects of the curse of dimensionality.
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Next, consider the Euclidean metric L2:
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Figure 5. K = 50
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Figure 6. K = 500
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Figure 7. K = 5000
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Figure 8. K = 10000

See Figures 57, 61, 63, and 64 in Appendix A for larger versions of these graphs
and graphs for additional values of K. Again we see that the ratio r tends towards
1, but now we do not see as significant of a decrease in the speed with which this
increases for larger datasets. These tests fall in line with the results in [1] that the
L1 metric performs better in high dimensional spaces than the L2 metric. This
runs counter to intuition we have to think of distance in terms of Euclidean metric
in lower dimensions.
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Next, let us consider the L∞ metric:
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Figure 9. K = 50
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Figure 10. K = 500
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Figure 11. K = 5000
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Figure 12. K = 10000

See Figures 65, 69, 71, and 72 in Appendix A for larger versions of these graphs,
along with graphs for additional values of K. Here we do not see a significant
increase in effectiveness for large values of K, and the ratio tends quickly towards
infinity as the dimension N increases. These results further support the theoretical
findings in [1], that L2 is more effective at analyzing data in high dimensions than
L∞.
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3.2. Classification Accuracy. Next we want to perform an experiment analyz-
ing classification accuracy in high dimensional spaces. Let N be the dimension of
the space. First, we generate a set K of K N -dimensional points from U(0, 1)N .
For each x ∈ K, we randomly choose a class c1 or c2. Next, we generate a set M
of M N -dimensional points from U(0, 1)N . For each y ∈ M, we find the closest
point x ∈ K to y using distance metric d and set the true class of y equal to the
class of x.

To test the classification accuracy, we now perturb each point y ∈M by ξ. More
specifically, we let ξ ∈ N(0, σ2I) and set ỹ = y + ξ. Call this set of perturbed
points M̃. For each ỹ ∈ M̃, set the assigned class of ỹ equal to the class of its
nearest neighbor in K.

Let PTA(c1, c2) denote the probability that each ỹ has assigned class c2 and the
associated y true class c1. Using this we generate the confusion matrix:

Assigned Class
c1 c2

True Class
c1 PTA(c1, c1) PTA(c2, c1)
c2 PTA(c1, c2) PTA(c2, c2)

From this, generate from this graphs displaying the probability of correct iden-
tification, the accuracy rate PC ,

PC = PTA(c1, c1) + PTA(c2, c2),

for varying values of N , with fixed values of K, M , and σ. We run the test with
values σ = 0.1 and σ = 0.5, for each metric L1, L2, and L∞.
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Figure 13. K = 500,
M = 500, σ = 0.1
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Figure 14. K = 5000,
M = 5000, σ = 0.1

See Figures 73, 76 in Appendix B for larger versions of these graphs and addi-
tional graphs.
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Figure 15. K = 500,
M = 500, σ = 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

Ac
cu

ra
cy

 R
at

e

N

K = 5000, M=5000, Metric L1, sigma=0.5

Figure 16. K = 5000,
M = 1000, σ = 0.5

We see that for very small σ, such as σ = 0.1, the classification accuracy remains
relatively high in high dimensions, while giving low values for low dimensions.
However, as σ increases, the classification accuracy becomes wildly inaccurate.
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Next, we repeat the experiment in the L2 metric.
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Figure 17. K = 500,
M = 500, σ = 0.1
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Figure 18. K = 5000,
M = 1000, σ = 0.1
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Figure 19. K = 500,
M = 500, σ = 0.5
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Figure 20. K = 5000,
M = 1000, σ = 0.5

See Figures 81, 82, 83, 84 in Appendix B for larger versions of these graphs.
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Last, we repeat the experiment with the L∞ metric:
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Figure 21. K = 500,
M = 500, σ = 0.1
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Figure 22. K = 5000,
M = 1000, σ = 0.1
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Figure 23. K = 500,
M = 500, σ = 0.5
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Figure 24. K = 5000,
M = 1000, σ = 0.5

See Figures 86, 87, 90, 91 in Appendix B for larger versions of these graphs. We
see the same behavior for the L2 and L∞ metrics that we saw for the L1 metric:
namely, that for small σ, the accuracy remains relatively high. However, the larger
the value of σ, the less accurate our classification for perturbed data becomes. The
value taken for K appears to have little effect on this outcome.
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Lastly, consider the following:
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Figure 25. K = 5000, M = 5000, σ = 0.1

The above graph shows the classification accuracy for L1, L2, and L∞. Observe
that the classification accuracy for L∞ is lower than for the other two metrics.
One possibility for this is that the L∞ norm measures the distance between two
points on only one component. It is therefore easier for the small peturbation on
our datapoints to result in the points having a different nearest neighbor.
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3.3. Maximum and Minimum Distance With Gaussian Distribution.
Lastly, we would like to repeat the first experiment, but this time draw our ran-
dom points from Gaussian(0, 1) instead of the standard uniform distribution on
the interval from 0 to 1. In this experiment, it is important that we normalize our
data to norm 1 to prepare it for modeling.

Let N be the dimension of the space and K the number of points sampled. We
generate a set K of K N -dimensional points in Gaussian(0, 1). Next, we normalize
each point to norm 1. To do this let xi = (x1, x2, . . . , xK) for 1 ≤ i ≤ K. Let
mini = min1≤i≤K{xi} and maxi = max1≤i≤K{xi}.

We normalize our datapoints in two ways: first, we divide each component of
the vector by the vector’s Euclidean length. Then, we repeat the experiment with
max-min normalization, where we normalize each point by changing the value of
xi as follows:

xi =
xi −mini

maxi −mini

.

Next, we find the distance to the nearest neighbor and furthest neighbor as in the
first maximum and minimum distance experiment to find the ratio r = Dmin/Dmax

along with the standard deviation σ. We plot the average value of r as a function
of N for N = 1, 2, . . . , 10 and N = 10, 20, . . . , 100 for metrics L1, L2, and L∞.

First, we plot the graphs where we normalized with respect to the vectors’
Euclidean length.

With the city block metric L1 and Euclidean normalization we obtain:
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Figure 26. K = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

Av
g 

Va
l

N

K = 5000, Metric L1

Figure 27. K = 5000

See Figures 109 and 110 in Appendix D for larger versions of these graphs. We
observe that as expected from [1], for large datasets the behavior of the nearest
neighbor to the Gaussian distribution behaves similarly to results for data points
from the uniform distribution for metric L1.
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For metric L2 and Euclidean normalization we obtain the following results:
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Figure 28. K = 500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

Av
g 

Va
l

N

K = 5000, Metric L2

Figure 29. K = 5000

See Figures 111 and 112 in Appendix D for larger versions of these graphs.
Again, the ratio behaves similarly to that of points sampled from the uniform
distribution using metric L2.

Lastly, for the maximum distance metric L∞ we obtain
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Figure 30. K = 500
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Figure 31. K = 5000

See Figures 113 and 114 in Appendix D for larger versions of these graphs. We
see that the L∞ metric provides better results than the L1 and L2 metrics under
the Gaussian distribution.
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Next, we proceed to look at the ratios when we applied max-min normalization.
With the city block metric L1 and max-min normalization we obtain:
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Figure 32. K = 50
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Figure 33. K = 500
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Figure 34. K = 5000
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Figure 35. K = 10000

See Figures 92, 94, 96, and 97 in Appendix C for larger versions of these graphs
and graphs for additional values of K. We observe that for small amounts of data
points, our analysis yields an incredibly high standard deviation. However, as
expected from [1], for large datasets the behavior of the nearest neighbor to the
Gaussian distribution behaves similarly to results for data points from the uniform
distribution for metric L1.
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For metric L2 we obtain the following results:
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Figure 36. K = 50
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Figure 37. K = 500
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Figure 38. K = 5000

See Figures 98, 100, and 102 in Appendix C for larger versions of these graphs.
Again, for small sets of data points our analysis yields a high standard deviation,
but for larger sets of data points the ratio behaves similarly to that of points
sampled from the uniform distribution using metric L2.
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Lastly, for the maximum distance metric L∞ we obtain
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Figure 39. K = 50
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Figure 40. K = 500
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Figure 42. K = 10000

See Figures 103, 105, 107, and 108 in Appendix C for larger versions of these
graphs. With this metric we again have a high standard distribution for smaller
datasets. However, for large datasets, we see that the L∞ metric provides better
results than the L1 and L2 metrics under the Gaussian distribution. However, at
dimension 100, the ratio is already near 0.4, suggesting that further research into
more effective methods is still necessary.
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Lastly, we compare the results between normalization with respect to Euclidean
length and max-min normalization. First, observe the results for K = 500.
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Figure 43. K = 500, Metric L1
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Figure 44. K = 500, Metric L2
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Figure 45. K = 500,
Metric L∞

See Figures 115, 116 and 117 in Appendix E for larger versions of these graphs.
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Next observe the results of the comparison for K = 5000:
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Figure 46. K = 5000,
Metric L1
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Figure 47. K = 5000,
Metric L2
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Figure 48. K = 5000,
Metric L∞

See Figures 118, 119 and 120 in Appendix E for larger versions of these graphs.
It appears from our empirical results that normalization with respect to the Eu-
clidean length of the vector yields higher accuracy than max-min normalization.
However, with the L∞ norm, this difference is less pronounced.

4. Conclusion

All in all, we see that the curse of dimensionality holds true for our empirical
tests on theoretical results. In high dimensions, the ratio between the nearest
neighbor and farthest neighbor grows closer to one as the dimension N increases
for metrics L1, L2, and L∞, whether our data points are taking from the uniform
distribution or the Gaussian distribution. Furthermore, anything more than a
very small perturbance in our data creates massively inaccurate classification of
data, demonstrating that for analysis of high-dimensional data we need something
more than the nearest-neighbor rule.
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Ideas for theoretical results on which to conduct empirical tests on include local
dimensionality reduction [2], fractional distance metrics [1], and k-nearest neighbor
methods [8]. An especially promising route is the use of fractional distance metrics,
with greatly increased performance of small fractional distance metrics reported
in [1].
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Appendix A. Graphs For Project 1, Part 1
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Appendix B. Graphs For Project 1, Part 2
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Appendix C. Graphs For Project 2 with Max Min Normalization
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Appendix D. Graphs For Project 2 With Normalization With
Respect To Euclidean Metric
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Appendix E. Comparison Graphs for Project 2
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