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Abstract. Weighted threshold secret sharing schemes, first introduced by Shamir
in 1978 [6], are discussed extensively in the work of Tamir Tassa. In a weighted
threshold secret sharing scheme each member in a set of users is assigned its own
positive weight. A secret may only be “unlocked” if the sum of the weights of the users
exceeds the threshold. In Characterizing Ideal Weighted Threshold Secret Sharing,
Beimel, Tassa, and Weinreb characterize all ideal threshold access structures as either
(1) hierarchical threshold access structures, (2) tripartite threshold access structures,
or (3) a combination of two ideal weighted threshold access structures. We go on to
discuss Hierarchical Threshold Secret Sharing by Tassa in which he presents an ideal
perfect hierarchical threshold secret sharing scheme. Lastly, we discuss Multipartite
Secret Sharing and Bivariate Interpolation by Tassa and Dyn, where they introduce a
new way of designing secret sharing schemes by using bivariate Lagrange interpolation
for different types of multipartite access structures.

1. Introduction

1.1. Overview. A (t, n) secret sharing scheme is a method of sharing a secret among
n users so that any combination of more than t users can reconstruct the secret, but no
group of t or less of the users can do so. This number t is called the threshold for the
scheme [8]. Furthermore, no matter how many users are present, running the scheme
reveals nothing about any user’s personal share of the secret [3].

Secret sharing schemes are used widely in applications such as sharing the key to
a central vault in a bank, electronic voting schemes, blind signature schemes, and the
millionaire problem [3][8]. Secret sharing schemes, first introduced by Shamir in 1978,
presented a solution to these problems [6].

However, sometimes we consider certain users to have higher value of others in the
scheme. For instance, the CEO of a large corporation may want to be able to access
a certain secret on her own, while requiring at least three supervisors to be present to
access the same secret on their own. For problems like this we introduce weighted secret
sharing schemes.

1.2. Weighted Secret Sharing Schemes. In a weighted threshold secret sharing
scheme, each user is assigned a positive weight. We can only recover the secret if the
sum of the weights of the users trying to recover it exceeds the threshold [1]. Schemes
such as Shamir’s assign each user equal weight, meaning each user has the same status.
We now study schemes where users are allowed to have different weights.
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A weighted threshold secret sharing scheme has many real-life applications. For ex-
ample, you may wish to share a secret among shareholders of a company, each of whom
holds a different amount of shares [1]. In this way, for instance, it is possible to assign
users with higher positions in a company a higher weight.

1.3. Outline of Paper. We describe terminology and notation in Section 2. We intro-
duce the concept of a weighted threshold secret sharing scheme as an access structure
and define several specific types of access structures, including ideal access structures.

In Section 3 we discuss Characterizing Ideal Weighted Threshold Secret Sharing [1]
by Beimel, Tassa, and Weinreb. 3. Here, the authors characterize all ideal weighted
threshold access structures as either hierarchical, tripartite, or a composition of the two.

Next, we discuss Hierarchical Threshold Secret Sharing [8] by Tamir Tassa in Section
4. Here, the author outlines a secret sharing scheme for groups where the members
differ in authority of confidence level. The scheme is based on Birkhoff interpolation
and using polynomial derivatives to generate shares of lesser “weight,” and discusses the
way to assign identities to the participants.

We conclude by discussing Multipartite Secret Sharing and Bivariate Interpolation [5]
by Tassa and Dyn in Section 5. Here, the authors use bivariate interpolation to construct
ideal secret sharing schemes for compartmented access structures, hierarchical threshold
access structures, and a new type of compartmented access structures.

2. Terminology and Notation

In his work Tassa frames the discussion of secret sharing schemes in terms of the
language of access structures. An access structure is defined in [1] as follows:

Definition 2.0.1 (Access Structure). Let U = {u1, . . . , un} be a set of users. A collec-
tion Γ ⊆ 2U is monotone if B ∈ Γ and B ⊆ C implies that C ∈ Γ. An access structure
is a monotone collection Γ ⊆ 2U of non-empty subsets of U . Sets in Γ are called au-
thorized and sets not in Γ are called unauthorized. A set B is called a minterm of Γ if
B ∈ Γ and C 6∈ Γ for any C ⊂ B. [1]

The access structure simply provides a set of all possible combinations of users who
could unlock the secret together. Using access structures, the authors define a Secret-
Sharing Scheme as follows:

Definition 2.0.2 (Secret-Sharing Scheme). Let S be a finite set of secrets, where
|S| ≥ 2. An n-user secret-sharing scheme Π with domain of secrets S is a random-
ized mapping from S to a set of n-tuples Πn

i=1Si, where Si is called the share-domain of
ui. A dealer shares a secret s ∈ S among the n users of some set of users U according to
Π by first sampling a vector of shares Π(s) = (s1, . . . , sn) ∈ Πn

i=1Si, and then privately
communicating each share si to the user ui. We say that Π realizes an access structure
Γ ⊆ 2U if the following two requirements hold:

• Correctness: The secret s can be reconstructed by any authorized set of users.
• Privacy: Every unauthorized set can learn nothing about the secret (in the

information theoretic sense) from the shares of the users in the set.
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An ideal weighted secret sharing scheme is a scheme where the size of the total domain
of possible secrets is the size of the domain of shares of each user. More formally, we
say that an access structure is ideal if the domain of shares of each user is equal to the
domain of secrets S [1]. For instance, consider a secret sharing scheme with the set of
possible secrets S, and let T be the set of all possible shares. We define the information
rate of the scheme as

ρ =
log |T |
log |S|

,

and we say that a scheme is ideal if ρ = 1 [2]. As a more concrete example, Shamir’s
secret sharing scheme is ideal because the secret s is chosen from a field K and the shares
are also chosen from K, hence in S = T = K. We are interested in ideal secret sharing
schemes because these are the most space-efficient schemes [1].

A more specific type of access structure is a weighted threshold access structure
(WTAS), which corresponds to weighted threshold secret sharing schemes. The text
defines a WTAS as follows:

Definition 2.0.3 (Weighted Threshold Access Structures (WTAS)). Let w : U → N
be a weight function on U and T ∈ N a threshold. Define w(A) :=

∑
u∈Aw(u) and

Γ = {A ⊆ U : w(A) ≥ T}. Then, Γ is called a weighted threshold access structure on
U [1].

Another type of access structure is called hierarchical threshold access structure (HTAS).
In a HTAS, we split up the set of users into some number of levels, and the users in one
level all share the same weight. More formally, a HTAS is defined in [1] as follows:

Definition 2.0.4 (Hierarchical Threshold Access Structures). Let m be an integer, U
a set of users, and {Li}1≤i≤m a partition of U into m disjoint levels. Call Li the levels
in the HTAS. Let {ki}1≤i≤m be a sequence of decreasing thresholds. This hierarchy and
sequence of thresholds induces a hierarchical threshold access structure (HTAS) on U :

ΓH =

A ⊂ U : There exists i ∈ {1, . . . ,m} such that

∣∣∣∣∣∣A ∩
m⋃
j=i

Lj

∣∣∣∣∣∣ ≥ ki
 .

In other words, A ⊆ U is in ΓH if and only if it contains at least ki users from the ith
level and above for some i, 1 ≤ i ≤ m.

Another type of access structure is called a multipartite access structure (MPAS). An
MPAS splits the users into a number of compartments then does not distinguish between
different users who are in the same compartment. A MPAS is defined in [5] as follows:

Definition 2.0.5 (Multipartite Access Structure (MPAS)). Let U be a set of users and
assume that U is partitioned into m disjoint compartments,

U =

m⋃
i=1

Ci.

Let Γ = 2U be an access structure on U and assume that for all permutations π : U → U
such that π(Ci) = Ci, 1 ≤ i ≤ m, then V ∈ Γ if and only if π(V ) ∈ Γ. Then Γ is called
m-partite or multipartite with respect to the partition.
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Tripartite access schemes (TPASs), schemes where m = 3 as defined above, are re-
viewed in Section 3, while MPASs as a whole are studied in Section 5. A TPAS is defined
more precisely in [1] as follows:

Definition 2.0.6 (Tripartite Access Structure (TPAS)). Let U be a set of n users such
that U = A ∪ B ∪ C, where A, B, and C are pairwise disjoint and A and C are not
empty. Let m, d, t be positive integers such that m ≥ t. Then, the following defines a
tripartite access structure (TPAS) on U :

∆1 = {X ⊆ U : (|X| ≥ m and |X ∩ (B ∪ C)| ≥ m− d) or |X ∩ C| ≥ t}.

Namely, a set X is in ∆1 if either it has at least m users, (m − d) of which are from
B∪C, or it has at least t users from C. If |B| ≤ d+ t−m, then the following is another
type of TPAS:

∆2 = {X ⊆ U : (|X| ≥ m and |X ∩ C| ≥ m− d) or |X ∩ (B ∪ C)| ≥ t}.

Lastly, we defined an ideal linear secret sharing scheme:

Definition 2.0.7 (Ideal Linear Secret Sharing Scheme). Let F be a finite field. An ideal
linear secret sharing scheme over F is of the following form: The domain of secrets and
shares is S = F. The scheme is specified by n+ 1 vectors in Fd for some d ∈ Z: namely,
a vector ui for each participant ui ∈ U , 1 ≤ i ≤ n, and a target vector t. To share a
secret S ∈ F, the dealer chooses a random vector w ∈ Fd such that w · t = S, and then
the share of participant ui is w · ui. [5]

3. Characterizing Ideal Weigthed Threshold Secret Sharing

3.1. Results Overview. We begin with Characterizing Ideal Weighted Threshold Se-
cret Sharing by Beimel, Tassa, and Weinreb. While we have seen schemes for threshold
secret sharing [6], in these schemes each users share carries the same weight. We now
turn our attention to weighted threshold secret sharing schemes. In their paper, Beimel,
Tassa, and Weinreb characterize all weighted threshold secret sharing schemes which
are ideal, as defined in Section 2. Namely, the authors demonstrate that if we have an
ideal WTAS, then it is of one of three possible forms:

1. A hierarchical threshold access structure,
2. a tripartite access structure, or
3. a combinatorial composition of two ideal weighted threshold access structures which

satisfies certain properties [1].

We will describe each of these access structures separately. However, before delving
into the meaning of each of these structures, we must first learn the language of a
mathematical object called a matroid.

3.2. Matroids. The authors frame their proofs around the structure of matroids, which
provide information on the structure of ideal WTASs. For an ideal WTAS there is a
matroid with a corresponding structure, and furthermore every matroid which can be
represented over a finite field is the reflection of an ideal access structure. A matroid is
defined in [1] as follows:
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Definition 3.2.1 (Matroid). A matroid M = 〈V, I〉 is a finite set V and a collection
I of subsets of V which satisfy the following axioms:

(1) ∅ ∈ I,
(2) If X ∈ I and Y ⊆ X then Y ∈ I, and
(3) If X,Y ∈ I such that |X| = |Y |+ 1, then there is an element x ∈ X \ Y such that

Y ∪ {x} ∈ I.

Furthermore, we define the following properties:

• The elements of V are called the points of the matroid.
• The sets contained in I are the independent sets of the matroid. A set which is

not independent is called a dependent set.
• Minimally dependent sets are called circuits.
• A matroid is connected if for every pair of points in V , there is a circuit that

contains both of those points.

Matroids provide powerful results for the study of WTASs. Every ideal WTAS Γ
has a corresponding matroid M [1]. If the users of a WTAS Γ are U = {u1, . . . , un},
then the points of M are U ∪ {u0}, where u0 is an additional point representing the
dealer. The set of all Γ-minterms supplemented by u0 is defined as C0 = {X ∪ {u0} :
X is a minterm of T}.

There are several properties of matroids which provide useful in the classification
of WTASs. First, for any X = {x1, . . . , xk} ∈ Γ there is an integer i < k such that
Xi,k = {xi, . . . , xk} is a minterm [1]. We call Xi,k a suffix minterm. Similarly, a minterm
of the form {x1, . . . , xj} for some j < k is called a prefix minterm. A minterm of the
form Ai,j = {ak}i≤k≤j is called a run minterm. Using the properties of matroids, the
authors prove the following result:

Lemma 3.2.1. Any X ∈ Γ contains a suffix minterm. If X = {x1, . . . , xk} and X ∈ Γ,
then there is an i, 1 ≤ i ≤ k, such that Xi,k = {xi, . . . , xk} is a minterm.

3.3. Hierarchical Threshold Access Structures. The authors give a description of
the intersection between hierarchical threshold access structures (HTASs) and WTASs.
Recall that in a HTAS we split up the set of users U into m disjoint levels, U =

⋃m
i=1 Li,

and the users in one level all share the same weight. Say the weight for level Li is given
by ki, where 1 ≤ i ≤ m and ki > ki+1.

Say that a user in the last level Lm of a HTAS is self-sufficient if km = 1. If this is
the case then we refer to this level as trivial. The authors show that if the last level
Lm of Γ is not trivial then m is at most 2. Furthermore, if m = 2 and k1 − k2 > 1
then |L1| = k1 − k2 + 1. This means that if a WTAS Γ which is also a HTAS has no
self-sufficient users, then there are only either 1 or 2 levels [1].

If there are two levels then either k1 = k2 + 1 or |L1| = k1 − k2 + 1. If the HTAS
has self-sufficient users (i.e., the last level Lm has only one user) then restricting Γ to
its first m − 1 levels yields a WTAS which is also a HTAS, and that restriction has no
self-sufficient users. All in all, we see that if Γ is both a WTAS and a HTAS then one
of the following conditions is satisfied:

(1) m = 1.
(2) m = 2 and k1 = k2 + 1.
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(3) m = 2 and |L1| = k1 − k2 + 1.
(4) m ∈ {2, 3}, the level Lm has only one user, and the restriction of ΓH to the first

m− 1 levels is of one of the forms (1)− (3).

The converse also holds – if we have a HTAS ΓH which satisfies one of the above
conditions, then there is a weight function and a threshold such that ΓH coincides with
the corresponding WTAS [1]. Therefore we have determined when a HTAS is a WTAS
and described the structure of the HTAS when this is the case.

However, the goal of this paper is to characterize ideal WTASs. Let Γ be a WTAS
on n users with a corresponding weight function w : U → N and threshold T . Assume
that U has minterm U1,k for some 1 ≤ k ≤ n (in other words, a prefix minterm). The
authors partition U into levels and determine corresponding thresholds, describing a
HTAS denoted ΓH . Partition U into levels as follows:

• By Lemma 3.2.1, since U1,i = {u1, . . . , ui} is authorized for any k ≤ i ≤ n there
is a run minterm ending at ui. Denote the length of this run minterm by µi.
• The sequence µ = (µi)k≤i≤n is monotonically non-increasing. Let m denote the

number of distinct values taken by µ. We let m be the number of levels in ΓH .
• Let ki denote these values, where ki is the ith threshold in ΓH , and note that
k1 > · · · > km.
• Now, let `i be the index of the first user in the first run minterm of length ki.

Note that `1 = 1 since U1,k is the first run minterm of length k1.
• The ith level in ΓH is given by Li = U`i,`i+1−1, where `m+1 = n+ 1.

The authors prove that the WTAS Γ described above corresponds with the HTAS
ΓH :

Theorem 3.3.1. Let Γ be an ideal WTAS on U that has a prefix minterm. Then, Γ is
an HTAS [1].

Therefore, we have characterized a portion of the ideal WTASs as HTASs – namely,
ideal WTASs with a prefix minterm are HTASs.

Example. Say we have an ideal WTAS Γ which has 14 users whose weights respectively
are 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 30, 30, 30 with threshold T = 30. Then L1 contains the four
users with weight 5, L2 contains the seven users with weight 6, and L3 contains the three
self-sufficient users with weight 30.

3.4. Tripartite Threshold Access Structures. Next, we introduce further notation.
Let A = {aj}1≤j≤k and B = {bj}1≤j≤` be two ordered subsets of U = {u1, . . . , un}. Say
that for users ui and uj , we have that ui ≺ uj if i < j. Furthermore we let A ≺ B
denote that:

• ∅ ≺ A for all nonempty A ⊂ U .
• If a1 ≺ b1 then A ≺ B; if b1 ≺ a1 then B ≺ A; otherwise A ≺ B if and only if

(A \ {a1}) ≺ (B \ {b1}).
Let M be the lexicographically minimal minterm of a WTAS Γ on U if M is a minterm
in Γ such that M ≺M ′ for all other minterms M ′ ∈ Γ.

In this section the authors characterize ideal WTASs whose lexicographically minimal
minterm takes the form M = U1,d ∪ Ud+2,k, where 1 ≤ d ≤ k − 2 and k ≤ n. Assume
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that there are no self-sufficient users and there is at least one minterm starting with
user u2. The authors show that U2,k is, in fact, a minterm of Γ. Ideal WTASs which
are TPASs are described as follows:

Theorem 3.4.1. Let Γ be an ideal WTAS such that M = U1,d ∪ Ud+2,k is its lexico-
graphically minimal minterm for some 1 ≤ d ≤ k − 2 and k ≤ n. If there is a minterm
in Γ with u2 as its minimal member and if Γ has no self-sufficient users, then Γ is a
TPAS [1].

Example. Consider a set of nine users U = {u1, . . . , u9}. Let Γ be a WTAS with
weights 16, 16, 17, 18, 19, 24, 24, 24, and 24, respectively. Let the threshold T = 92. Note
that there is no prefix minterm, since

w(U2,6) = 16 + 17 + 18 + 19 + 24 = 94 ≥ T

but w(U1,5) < T . Thus, k = 6. The lexicographically minimal minterm for this example
is U1,3∪U5,6, so d = 3. We have the TPAS with three sets of users: A = U1,4, B = {u5},
and C = U6,9. In other words, we have that r = 5 with thresholds k1 = 5 and k2 = 4,
and since r > d−1 this is an access structure of type ∆1 as in Definition 2.0.6. A set is
authorized if it contains for or more users from C, or if it has five users where at least
two of the five users are from B ∪ C [1].

3.5. WTASs of the Third Type. So far, we have characterized WTASs as either
HTASs or TPASs. When this is not the case, we instead have a composition of two ideal
WTASs. With this in mind, the authors define a composition of access structures as
follows:

Definition 3.5.1 (Composition of access structures). Let U1 and U2 be disjoint sets of
users, and let Γ1 and Γ2 be access structures on U1 and U2 respectively. Let u1 ∈ U1

and set U = (U1 ∪ U2) \ {u1}. Then the composition of Γ1 and Γ2 via u1 is

Γ =
{
X ⊆ U : X1∈Γ1 or (X2∈Γ2 and X1∪{u1}∈Γ1),

where X1=X∩U1 and X2=X∩U2

}
First, the authors show that if Γ is an access structure which is a composition of Γ1

and Γ2, then Γ is ideal if and only if Γ1 and Γ2 are ideal. The authors characterize ideal
WTASs as compositions of access structures by splitting the users into disjoint subsets
of strong users and weak users: the strong users are a subset of the form of a suffix
S = Uk,n where k ≥ 3 and the weak users are its complement, W = U1,k−1.

To define a strong set more precisely, let a set Y ⊆ S be called an S-cooperative
set if Y 6∈ Γ but W ∪ Y ∈ Γ. Let Y1, Y2 ∈ S be any two S-cooperative sets. If
ΓY1,W = {Z ⊆ W : Z ∪ Y1 ∈ Γ} and ΓY2,W = {Z ⊆ W : Z ∪ Y2 ∈ Γ} coincide, then the
set S is called a strong set of users.

Next, let M1 be the lexicographically minimal minterm in an ideal WTAS Γ and let
ur be the maximal user in M1. The authors show that if Γ is neither a HTAS nor a
TPAS then U1,r−1 contains at least two users that are not in M1. Call u` the minimal
user in M1 such that at least to users in U1,`−1 are missing from M1. Let ud be the
maximal user in M1 such that U1,d ⊂M1. Let the set of users in M1 ∩U`,n be called Z,
denoted Z = {z1, . . . , zm}.
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The authors show that if none of the S-cooperative sets have size larger than m then
S is a strong set. On the other hand, if there is an S cooperative set with size greater
than m and there is a minterm of Γ which starts with u2, then Ud+2,n is a strong set of
users.

All together, the authors prove the following:

• If Γ has self-sufficient users or if u2 starts no minterm of Γ, then Γ is a composition
of two ideal WTASs that are defined on sets smaller than U .
• If Γ has a strong set of users S = Uk,n for some k ≥ 3, then Γ is a composition of

two ideal WTASs. Each of the two access structures is defined on a set smaller
than U – one is defined on W and the other is defined on S supplemented by an
additional user [1].

Example. Consider a WTAS with users U = {u1, . . . , u8} with weights 1, 1, 1, 1, 1, 3,
3, 3 and threshold T = 6. This access structure has lexicographically minimal minterm
{u1, u2, u3, u6}. Therefore, Γ is neither a HTAS nor a TPAS. In this case, W = U1,5 is
the set of weak users and S = U6,8 is the set of strong users. Then Γ is a composition
of a 2-of-4 threshold access structure on S ∪ {u′} and a 3-of-5 access structure on W ,
where u′ is a dummy variable.

3.6. Main Result. Let Γ be an ideal WTAS defined on a set of n users U and let M1

be its lexicographically minimal minterm. All in all, the authors conclude that ideal
WTAS takes one of the following forms:

(1) If Γ has self-sufficient users or if u2 starts no minterm of Γ then Γ is a composition
of two ideal WTASs on smaller sets of users.

(2) If M1 is a prefix minterm, then Γ is an HTAS.
(3) If M1 = U1,d ∪ Ud+2,k for some 1 ≤ d ≤ k − 2 and k ≤ n, if there is a minterm

in Γ with u2 as its minimal member, and if Γ has no self-sufficient users, then Γ
is a TPAS.

(4) Otherwise, Γ is a composition of two ideal WTASs defined on sets smaller than
U .

4. Hierarchical Threshold Secret Sharing

4.1. Terminology and Results Overview. The next paper we review is Hierarchical
Threshold Secret Sharing by Tamir Tassa. This paper addresses the common problem
where sometimes the users in a secret sharing scheme are split into a hierarchy of weights.
A simple example of this is that of a bank policy that requires three employees to open
a vault, but at least one of them must be the manager. Such a setting requires a special
way to share a secret. While hierarchical groups have been studied in the past, none
of the proposed solutions were ideal. Tassa presents a perfect secret sharing scheme for
hierarchical groups that is, in fact, ideal.

The new idea introduced by Tassa uses derivatives of polynomials to generate the
shares for participants that belong to lower levels in the hierarchy. Since the scheme
uses Birkhoff interpolation to reconstruct the secret, we need to investigate how to assign
identities to the players from the underlying finite field.

A hierarchical secret sharing is defined in [8] as follows:
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Definition 4.1.1 (Hierarchical Threshold Secret Sharing (HTSS)). Let U be a set of n
users. We think of U as being composed of m levels, meaning that U =

⋃m
i=0 Ui where

Ui∩Uj = ∅ for all 0 ≤ i < j ≤ m. If k = {ki}mi=0 is a monotonically increasing sequence
of integers then a (k, n)-hierarchical threshold access structure (HTAS) is given by

Γ = {V ⊂ U :
∣∣V ∩ (∪ij=0Uj

)∣∣ ≥ ki∀i ∈ {0, 1, . . . ,m}} . (1)

A corresponding (k, n)-hierarchical threshold secret sharing scheme is a method of
assigning each user u ∈ U a share σ (u) of a given secret S such that authorized subsets
V ∈ Γ are able to reconstruct the secret, while pooling shares from unauthorized subsets
V /∈ Γ does not reveal anything about the value of the secret. Viewing the secret S as a
random variable that takes values in a finite domain S we state that the two requirements
mentioned above can be formulated as follows:

H (S|σ(V )) = 0 ∀V ∈ Γ (accessibility)

and

H (S|σ(V )) = H (S) ∀V /∈ Γ (perfect security).

Let Σu be the set of all possible shares for a user. We call the scheme ideal if for the
information rate of the scheme ρ, where

ρ = min
u∈U

log2 |S|
log2 |Σu|

,

we have ρ = 1. [8]

Note that these definitions are equivalent to the ones provided in Section 2. However,
phrasing them in this way proves advantageous for the proofs required in this paper.

4.2. Ideal Hierarchical Secret Sharing Scheme. Let F be a field of large prime
order q and consider the HTSS problem (k, n), k = {ki}mi=0 as defined above. The ideal
HTSS proposed in [8] is as follows:

1. The dealer selects a random polynomial P (x) ∈ Fk−1[x], where

P (x) =
k−1∑
i=0

aix
i and a0 = S.

2. The dealer identifies each participant u ∈ U with a field element, also denoted u
3. Each user from the ith level in the hierarchy will receive the (ki−1)th derivative

of P (x) at x = u where k−1 = 0.

This scheme is ideal. Furthermore, it is of interest to note that Shamir’s secret sharing
scheme is a special case of the above scheme where there is only one level, and hence no
derivatives are used [8], [6].
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4.2.1. Conditions for Accessibility and Perfect Security. Next, we want to consider
whether the scheme defined above meets the requirements for accessibility and perfect
security. Let V =

{
u1, . . . , u|V |

}
⊂ U and assume that

u1, . . . , ul0 ∈U0

ul0+1, . . . , ul1 ∈U1

... where 0 ≤ l0 ≤ · · · ≤ lm = |V |
ulm−1+1, . . . , ulm ∈Um

Say that V is authorized if and only if li ≥ ki for all 0 ≤ i ≤ m.
Let r : F → Fk be a function defined as r(x) = (1, x, x2, . . . , xk−1). The share that

is distributed to the participants u ∈ Ui is σ(u) = r(ki−1)(u) · a, where a is the vector of
coefficients of P (x). Hence, when all participants combine their shares the system they
want to solve is MV a = σ where MV is written by rows as

MV = (r(u1), . . . , r(ul0);

r(k0)(ul0+1), . . . , r(k0)(ul1);

...

r(km−1)(ulm−1+1), . . . , r(km−1)(ulm))

where

σ = (σ(u1), σ(u2, ), . . . , σ(ulm))T .

Say a matrix is regular if its determinant is nonzero in F. Tassa proves that if 0 ∈ U0

and for any minimal subset V ∈ Γ the corresponding square coefficient matrix MV

is regular, then the accessibility and perfect security conditions for the secret sharing
scheme hold.

4.2.2. Random Allocation of Participant Identities. Next we analyze strategies of al-
locating the identities of the participants. The first strategy of allocating participant
identities is the random one, where

Pr(U = W ) =
1(
q−1
n

) ∀W ⊂ F\{0} , |W | = n.

If we assume the above random allocation of participant identities and if V is a randomly
selected subset from 2U , then if V ∈ Γ we have

Pr(H(S|σ(V )) = 0) ≥ 1− ε,

while otherwise

Pr(H(S|σ(V )) = H(S) ≥ 1− ε
where

ε =
(k − 1)(k − 1)

2(q − k)
.
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4.2.3. Monotone Allocation of Participant Identities. Next we see an allocation method
that guarantees both accessibility and perfect security if the field F is of a sufficiently
large prime order q.

For every 0 ≤ i ≤ m we define ni = | ∪ij=0 Ui| and let n−1 = 0. In Lemma 4.2.1 the
basic lower bound for q that guarantees the two aforementioned conditions are proved.

Lemma 4.2.1. Let (k,n) be a hierarchical threshold secret sharing problem and assume
that the participants in U are assigned identities in Fq in a monotone manner. Further-
more, if we assume that N = maxU and that

2−k · (k + 1)(k+1)/2 ·N (k−1)k/2 < q = |F|
then the HTSS satisfies the accessibility and perfect security conditions.

The next theorem uses the bound from the Lemma 4.2.1. Using a more delicate
analysis gives us a better bound:

Theorem 4.2.1. Under the conditions of Lemma 4.2.1 the HTSS satisfies the accessi-
bility and perfect security conditions provided that

α(k)N (k−1)(k−2)/2 < q = |F|
where α(k) := 2−k+2 · (k − 1)(k−1)/2 · (k − 1)!.

4.3. Ideal Scheme for the Disjunctive Hierarchical Secret Sharing Problem.
The requirement in Equation 1 is what we call a conjunction of the threshold conditions.
In another version of the problem we consider a disjunction of the threshold conditions,
where

Γ =
{
V ⊂ U : ∃i ∈ {0, 1, . . . ,m} for which

∣∣V ∩ (∪ij=0Uj
)∣∣ ≥ ki} .

Tassa shows that the ideality of the disjunctive HTASs follows immediately from the
ideality of the conjuctive ones. Furthermore, he gives the description of an ideal scheme
that doesn’t have the difficulties found in previous solutions [2], [7] .

The scheme is as follows:

1. The dealer selects a random polynomial P (x) ∈ Fk−1[x] where

P (x) =

k−1∑
i=0

aix
i and ak−1 = S. (2)

2. The dealer identifies each participant u ∈ U with a field element, denoted simply
by u.

3. The dealer distributes shares to all the participants in such a way that each
participant of the ith level in the hierarchy receives the share P (k−ki)(u) instead

of the P (ki−1)(u) that he was getting in the original scheme.

The simple idea behind the allocation in the last step is that given V ⊂ U , its threshold
will be determined by its lowest participant. If we assume that the lowest participant
in V is from level Ui then all the participants in V will have shares with derivatives
of order k − ki or higher. This means that all the equations that correspond to those
shares involve the kith coefficients of P (x) as unknowns. Therefore, we must have at
least ki participants in order to have a sufficient number of equations. Finally, concern-
ing the allocation of participant identities in order to achieve accessibility and perfect
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security, the random and monotone allocations that have been described work fine for
this modified scheme, as shown by Tassa in the paper [8].

5. Multipartite Secret Sharing by Bivariate Interpolation

5.1. Terminology and Results Overview. The final paper we review is Multipartite
Secret Sharing by Bivariate Interpolation by Tassa and Dyn. The authors study three
types of multipartite access structures: compartmented, hierarchical threshold, and a
new type of compartmented. Furthermore, they propose an ideal secret sharing scheme
for these types based on bivariate interpolation.

The introduction of a second dimension may create the same hierarchical effect as
derivatives and Birkhoff interpolation were shown to do in [8]. Letting F be a finite
field of sufficiently large size q, the secret S ∈ F is encoded by the coefficients of an
unknown bivariate polynomial P (x, y) ∈ F[x, y]. The dealer distributes the shares to
each participant ui ∈ U which are essentially points (xi, yi) ∈ F2.

We want the authorized subsets to be able to recover P (x, y) while the unauthorized
subsets will not be able to gain any information about the secret. Bivariate interpolation
is suitable for multipartite settings because we can associate each compartment with a
different line in the plane.

In order to prove that a given scheme realizes perfectly some access structure Γ, we
want to prove two things. Let V be some subset of U and MV is the sub-matrix of M
that consists of all rows of M with labels in V . We first show that if V is a minterm,
then with high probability t ∈ row(MV ). The vectors associated with the members
of V span the target vector t with high probability so V may reconstruct the secret.
The matrices MV will be square for a minterm V , so we just have to show that their
determinant is non-zero. We then show that if V is a maximal unauthorized subset
then with high probability t /∈ row(MV ). This is proven by augmenting MV with the
additional row t and showing that the result is a matrix of full rank. Since this matrix
will always be square, with high probability it has a non zero determinant. This proves
that V will not gain any information about the secret.

We define two types of compartmented access structures.

Definition 5.1.1 (Compartmented access structure with lower bounds (CASLB)). Let
ti ∈ N, 1 ≤ i ≤ m, and let t ∈ N be thresholds such that t ≥

∑m
i=1 ti. Then

Γ = {V ⊆ U : ∃W ⊆ V such that |W ∩ Ci| ≥ ti, 1 ≤ i ≤ m, and |W | = t}
defines a compartmented access structure with lower bounds (CASLB).

Such access structures are useful when the size of an authorized subset must be at
leat some threshold t. Moreover, we want every compartment to be represented in the
authorized subset.

Furthermore, we have compartmented access structures with upper bounds:

Definition 5.1.2 (Compartmented access structure with upper bounds (CASUB)). Let
si ∈ N, 1 ≤ i ≤ m, and let s ∈ N be thresholds such that s ≤

∑m
i=1 si. Then

∆ = {V ⊆ U : ∃W ⊆ V such that |W ∩ Ci| ≤ si, 1 ≤ i ≤ m, and |W | = s}
defines a compartmented access structure with upper bounds (CASUB).
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This kind of access structure is useful when we have the opposite demand: while the
size of the authorized subset must be of some threshold, we want to limit the number
of participants that represent each compartment.

5.2. Ideal Secret Sharing for Compartmented Access Structures with Upper
Bounds. In this section we describe a linear secret sharing scheme for access structures
with upper bounds. Say we have a secret S ∈ F, and let xi, 1 ≤ i ≤ m, be distinct
random points in F. Define random polynomials Pi over F by

Pi(y) =

si−1∑
j=0

ai,jy
j .

Let the secret S be given by

S =

m∑
i=1

si−1∑
j=0

ai,jy
jLi(x)

where Li(x) are Lagrange polynomials of degree m − 1. A secret sharing scheme is
defined as follows:

Secret sharing scheme 1:

1. Each participant ui,j from compartment Ci is identified by a unique public point
(xi, yi,j), where yi,j 6= 1 is random and P (xi, yi,j) is the private share of the user.

2. We publish the value of P at k :=
∑m

i=1 si − s random points (x′i, zi) where x′i /∈
x1, . . . , xm , 1 ≤ i ≤ k.

This is an ideal scheme since the private shares of all users are taken from the domain
of secrets F. Since we are given k =

∑m
i=1 si − s free point values, we need s additional

points for full recovery. We cannot use more that si points from the line x = xi because
any si from that line will fully recover Pi(y) but are useless in recovering Pj(y) for j 6= i.

Lemmas 5.2.1 and 5.2.2 prove that the resulting scheme is perfect with high proba-
bility with respect to the random selection of points.

Lemma 5.2.1. If V ∈ ∆ it may recover the secret S with probability 1 − Cq−1, where
the constant C depends on m, s, and s1, . . . , sm.

Lemma 5.2.2. If V /∈ ∆ it may not learn anything about the secret S with probability
1− Cq−1, where the constant C depends on m, s, and s1, . . . , sm.

Using these lemmas, the authors prove the main result on Secret Sharing Scheme 1:

Theorem 5.2.1. The ideal Secret Sharing Scheme 1 is a perfect scheme that realizes
the CASUB with probability 1 − ε, where ε =

(
n+1
s

)
Cq−1 with constant C that depends

on m, s, and s1, . . . , sm.

5.3. Ideal Secret Sharing for Compartmented Access Structures with Lower
Bounds. In this section we describe a linear secret sharing scheme for a CASLB. The
construction is a scheme for the dual access structure Γ∗.
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Definition 5.3.1 (Dual compartmented access structure with upper bounds.). The dual
access structure Γ∗ is defined by:

Γ∗ = {V ⊆ U : |V | ≥ r or |V ∩ Ci| ≥ ri for some 1 ≤ i ≤ m}

where

r = n− t+ 1 and ri = ni − ti + 1 , 1 ≤ i ≤ m.

The thresholds in the dual access structure satisfy
∑m

i=1 ri ≥ r +m− 1.

Next, define m distinct points x1, . . . , xm in F and let Pi(y) be a polynomial of degree
ri − 1 over F satisfying

P1(0) = · · · = Pm(0) = S,

for a secret S. Define P as

P (x, y) =

m∑
i=1

Pi(y)Li(x) =

m∑
i=1

ri−1∑
j=0

ai,jy
jLi(x).

We can now present the secret sharing scheme for the dual access structure Γ∗:

Secret Sharing Scheme 2:

1. Each participant ui,j from compartment Ci will be identified by a unique public point
(xi, yi,j) where yi,j 6= 0 is random and her private share will be the value of P at that
point.

2. We publish the value of P at k = g− r random points (x′i, zi) where x′i /∈ x1, . . . , xm,
1 ≤ i ≤ k.

Lemmas 5.3.1 and 5.3.2 prove that the resulting scheme is perfect with high proba-
bility with respect to the random selection of points.

Lemma 5.3.1. If V ∈ Γ∗ it may recover the secret S with probability 1− Cq−1, where
the constant C depends on m, r, and r1, . . . , rm.

Lemma 5.3.2. If V /∈ Γ∗ it may not learn anything about the secret S with probability
1− Cq−1, where the constant C depends on m, r, and r1, . . . , rm.

The main result proven by Tassa and Dyn regarding the second secret sharing scheme
is as follows.

Theorem 5.3.1. The ideal Secret Sharing Scheme 2 is a perfect scheme that realizes a
CASLB with probability 1 − ε, where ε =

(
n+1
r

)
Cq−1 such that constant C depends on

m, r, and r1, . . . , rm.

5.4. Hierarchical Threshold Access Structures. In this section an ideal secret shar-
ing scheme for the realization of HTASs is proposed. The scheme uses Lagrange inter-
polation of bivariate polynomials.
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5.4.1. Constructibility and Non-Constructibility Results. We now want to answer the
following question: Given the values of a bivariate polynomial in a set of points in the
plane, what is the amount of information that those values reveal about the polynomial?

Theorems 5.4.1 and 5.4.2 allow us to understand how the polynomial can be re-
constructed and how when the proper conditions are not met there is no information
revealed about the secret. We need some further notation. Say a vector u dominates
a vector v, denoted u � v, if for all 1 ≤ i ≤ n we have that

∑i
j=1 ui ≥

∑i
j=1 vi [5].

Furthermore, let {L1}1≤i≤n be n lines in general position in F2. Consider a finite subset
of points V , none of which is an intersection point, which satisfies

V ⊂

(
n⋃
i=1

Li

)
\

 ⋃
1≤i<j≤n

Li ∩ Lj

 .

We say this subset is of type v ∈ Nn, where v is such that 0 ≤ v1 ≤ v2 ≤ · · · ≤ vn, if
there is a permutation π of (1, . . . , n) such that |V ∩ Lπ(i)| = vi for all i, 1 ≤ i ≤ n.

Theorem 5.4.1. Let F be a finite field of size q and n be a natural number such that
q > Cn :=

∑n
k=3 k

k+2. Let:

• {Li}1≤i≤n be n lines in general position in F2 none of which go through (0, 0).
• V be a randomly selected set of points on those lines, none of which is an inter-

section point, and let v be the type of that set.
• P (x, y) =

∑
0≤i+j≤n−1 ai,jx

iyj be a polynomial of degree (at most) n−1 in F[x, y]

and P |V be the values of P in the points of V

Then if v � (1, 2, . . . , n) the set of values P |V determines the polynomial P with proba-
bility at least 1− Cnq−1.

Theorem 5.4.2. Let

• {Li}1≤i≤n be n lines in general position in F2,
• V be a set of points on those lines, none of which is an intersection point of type
v � (1, 2, . . . , n)
• P (x, y) =

∑
0≤i+j≤n−1 ai,jx

iyj be a polynomial of degree (at most) n−1 in F[x, y]

and P |V be the values of P in the points of V ,
• S be a random linear combination of the coefficients of P.

Then P |V does not reveal any information on S with probability at least 1− q−1.

5.4.2. Hierarchical Threshold Access Structures. We are now ready to present the secret
sharing scheme for hierarchical access structures using bivariate Lagrange interpolation.
The added dimension achieves the same hierarchical effect as the derivatives in the
Birkhoff interpolation based scheme as proposed in [8].

Let {Lj}1≤j≤n be n := km lines in general position in F2, none of which goes through

(0, 0). Let {wi,j}1≤i+j≤n−1 be public values selected randomly from F. Finally, let

P (x, y) =
∑

0≤i+j≤n−1 ai,jwi,j be a random polynomial in Fn−1[x, y] whose coefficients

are selected such that S =
∑

0≤i+j≤n−1 ai,jwi,j .
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Secret sharing scheme 3:

1. Each participant from level Ci is identified by a public point Lki \

(⋃
1≤j≤n
j 6=ki

Lj

)
and

her private share will be the value of P at that point.
2. We publish the value of P at:

• ki−1 additional points on Lki , 2 ≤ i ≤ m
• j points on Lj for all j ∈ {1, 2, . . . , n} \ {ki : 1 ≤ i ≤ m}.

Theorem 5.4.3. The ideal Secret Sharing Scheme 3 is a perfect scheme that realizes
the HTAS with probability at least 1− Cnq−1, where Cn :=

∑n
k=3 k

k+2.

6. Conclusions

We were able to characterize all ideal WTASs as either a HTAS, a TPAS, or a com-
position of two ideal WTASs. Furthermore, we presented an ideal perfect hierarchical
threshold secret sharing scheme. We saw that adding a second dimension to the interpo-
lation method we gained the ability to associate different compartments with different
lines in the plane. Research has already been done in extending bivariate interpolation
to multivariate interpolation on flats in several dimensions [4]. This way, it might be
possible to design secret sharing schemes for a wide array of interesting access structures.
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