Generic-Case Complexity and Non-Commutative Cryptography

Alexander Wood

The Graduate Center, CUNY

Broad Overview

Today, we will discuss the use of generic-case complexity of algorithmic problems in groups to determine platform groups for use in non-commutative cryptosystems.

Broad Overview

- Algorithmic problems
- Worst-case and average-case complexity
- Generic-case complexity
- Non-commutative cryptography
- Platform groups for non-commutative cryptosystems
- Previous results on generic-case complexity and the conjugacy search problem in:
- HNN-extensions and Miller's groups
- Baumslag's groups

Computational Problems

[^0]
Computational Problems

- Core topic in computer science for over a century
- Take an input, perform some number of steps, produce an output

[^1]
Computational Problems

- Core topic in computer science for over a century
- Take an input, perform some number of steps, produce an output
- Decision problems ask us a "yes" or "no" question

[^2]
Computational Problems

- Core topic in computer science for over a century
- Take an input, perform some number of steps, produce an output
- Decision problems ask us a "yes" or "no" question
- Search problems asks us to find a specific value ${ }^{12}$

[^3]
Computational Problems: The Setup

- X a finite alphabet

Computational Problems: The Setup

- X a finite alphabet
- X^{*} all words in X

Computational Problems: The Setup

- X a finite alphabet
- X^{*} all words in X
- Subsets of X^{*} are languages in X

Decision Problems

- X a finite alphabet
- X^{*} all words in X
- Subsets of X^{*} are languages in X

Decision Problems

- X a finite alphabet
- X^{*} all words in X
- Subsets of X^{*} are languages in X

A decision problem $\mathcal{D}=(L, U)$ for a language $L \subseteq U \subseteq X^{*}$ asks whether there is an algorithm \mathcal{A} for a word $w \in U$ which determines whether $w \in L$.

Search Problems

- X a finite alphabet
- X^{*} all words in X
- Subsets of X^{*} are languages in X

Search Problems

- X a finite alphabet
- X^{*} all words in X
- Subsets of X^{*} are languages in X

A search problem \mathcal{D} for finite alphabets X and Y and a predicate $R(x, y) \subseteq X^{*} \times Y^{*}$ asks to find $y \in Y^{*}$ such that $R(x, y)$ holds, given $x \in X^{*}$.

Algorithmic Problems in Groups

- Some classical problems were introduced by Max Dehn in the early 1900's ${ }^{3}$.

[^4]
Algorithmic Problems in Groups

- Some classical problems were introduced by Max Dehn in the early 1900's ${ }^{3}$.
- The conjugacy problem
${ }^{3}$ M. Dehn, On the topology of three-dimensional space, 1907.

Algorithmic Problems in Groups

- Some classical problems were introduced by Max Dehn in the early 1900's ${ }^{3}$.
- The conjugacy problem
- The word problem
${ }^{3}$ M. Dehn, On the topology of three-dimensional space, 1907.

The Word Problem

Word Decision Problem (WDP): Consider a finitely generated group $G=\langle X \mid R\rangle$. Given a word w in the generators of G, determine whether $w={ }_{G} 1$.

The Word Problem

Word Decision Problem (WDP): Consider a finitely generated group $G=\langle X \mid R\rangle$. Given a word w in the generators of G, determine whether $w=G 1$.

Word Search Problem (WSP): Consider a finitely generated group $G=\langle X \mid R\rangle$. Let w be a word in the generators of G such that $w=_{G} 1$. Find a representation of w as a product of conjugates of relators from R.

The Conjugacy Problem

Conjugacy Decision Problem (CDP): Let G be a finitely generated group and let $x, y \in G$. Determine whether x and y are conjugate in G.

The Conjugacy Problem

Conjugacy Decision Problem (CDP): Let G be a finitely generated group and let $x, y \in G$. Determine whether x and y are conjugate in G.

Conjugacy Search Problem (CSP): Let G be a finitely generated group and let $x, y \in G$ such that x and y are conjugate. Find a conjugator. In other words, find an element $a \in G$ such that $x=a^{-1} y a$.

Complexity

- Complexity class of an algorithm is a method of describing the resources needed by that algorithm

Complexity

- Complexity class of an algorithm is a method of describing the resources needed by that algorithm
- Time

Complexity

- Complexity class of an algorithm is a method of describing the resources needed by that algorithm
- Time
- Space

Complexity

- Complexity class of an algorithm is a method of describing the resources needed by that algorithm
- Time
- Space
- Need to know: model of computation, mode of computation, resources to be controlled, bound on controlled resource

Complexity

- Complexity class of an algorithm is a method of describing the resources needed by that algorithm
- Time
- Space
- Need to know: model of computation, mode of computation, resources to be controlled, bound on controlled resource
- Model: Multi-tape Turing machine

Complexity

- Complexity class of an algorithm is a method of describing the resources needed by that algorithm
- Time
- Space
- Need to know: model of computation, mode of computation, resources to be controlled, bound on controlled resource
- Model: Multi-tape Turing machine
- Mode: Deterministic

Complexity

- Complexity class of an algorithm is a method of describing the resources needed by that algorithm
- Time
- Space
- Need to know: model of computation, mode of computation, resources to be controlled, bound on controlled resource
- Model: Multi-tape Turing machine
- Mode: Deterministic
- Bound: Non-decreasing function $f: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$

Complexity

- Complexity class of an algorithm is a method of describing the resources needed by that algorithm
- Time
- Space
- Need to know: model of computation, mode of computation, resources to be controlled, bound on controlled resource
- Model: Multi-tape Turing machine
- Mode: Deterministic
- Bound: Non-decreasing function $f: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$
- For f, there must be a multi-tape Turing machine M_{f} such that for any input x with size n, M computes a string $0^{f(|x|)}$ in time $T_{M}(x)=\mathcal{O}(n+f(n))$

Worst-Case Complexity Classes

- $\operatorname{TIME}(f(n))$ is the set of languages which can be decided by a multi-tape Turing machine within the time bound $f(n)$.

Worst-Case Complexity Classes

- $\operatorname{TIME}(f(n))$ is the set of languages which can be decided by a multi-tape Turing machine within the time bound $f(n)$.
- $\operatorname{NTIME}(f(n))$ is the set of languages which can be decided by nondeterministic Turing machines within the time bound $f(n)$.

Worst-Case Complexity Classes

- $\operatorname{TIME}(f(n))$ is the set of languages which can be decided by a multi-tape Turing machine within the time bound $f(n)$.
- $\operatorname{NTIME}(f(n))$ is the set of languages which can be decided by nondeterministic Turing machines within the time bound $f(n)$.
- \mathbf{P} is the set of all languages which can be decided in polynomial time by multi-tape Turing machines. More precisely,

$$
\mathbf{P}=\bigcup_{k \in \mathbb{N}} \operatorname{TIME}\left(n^{k}\right)
$$

Worst-Case Complexity Classes

- $\operatorname{TIME}(f(n))$ is the set of languages which can be decided by a multi-tape Turing machine within the time bound $f(n)$.
- $\operatorname{NTIME}(f(n))$ is the set of languages which can be decided by nondeterministic Turing machines within the time bound $f(n)$.
- \mathbf{P} is the set of all languages which can be decided in polynomial time by multi-tape Turing machines. More precisely,

$$
\mathbf{P}=\bigcup_{k \in \mathbb{N}} \operatorname{TIME}\left(n^{k}\right)
$$

- NP is the set of all languages which can be decided in polynomial time by nondeterministic Turing machines, i.e.,

$$
\mathbf{N P}=\bigcup_{k \in \mathbb{N}} \operatorname{NTIME}\left(n^{k}\right)
$$

Deficiencies of Worst-Case Complexity

- Algorithm can be have very differently on average than it does in the worst case

Deficiencies of Worst-Case Complexity

- Algorithm can be have very differently on average than it does in the worst case
- Example: Hamiltonian Circuit problem is NP-complete but linear on average.

Deficiencies of Worst-Case Complexity

- Algorithm can be have very differently on average than it does in the worst case
- Example: Hamiltonian Circuit problem is NP-complete but linear on average.
- Average-Case Complexity takes into account the behavior of an algorithm on all inputs rather than just the "worst" by looking at the input distribution

Distributional Computational Problems

Definition (Probability Measure)

Let (I, \mathcal{M}) be a measurable space. A probability measure on I is a map $\mu: \mathcal{M} \rightarrow[0, \infty)$ satisfying:
(i) $\mu(\emptyset)=0$
(ii) $\mu(I)=1$
(iii) If $\left\{I_{n}\right\}$ is a collection of pairwise disjoint measurable sets, then

$$
\mu\left(\bigcup_{n=1}^{\infty} I_{n}\right)=\sum_{n=1}^{\infty} \mu\left(I_{n}\right)
$$

Distributional Computational Problems

Definition (Probability Measure)

Let (I, \mathcal{M}) be a measurable space. A probability measure on I is a map $\mu: \mathcal{M} \rightarrow[0, \infty)$ satisfying:
(i) $\mu(\emptyset)=0$
(ii) $\mu(I)=1$
(iii) If $\left\{I_{n}\right\}$ is a collection of pairwise disjoint measurable sets, then

$$
\mu\left(\bigcup_{n=1}^{\infty} I_{n}\right)=\sum_{n=1}^{\infty} \mu\left(I_{n}\right) .
$$

If / is discrete (enumerable), then probability distributions μ are called atomic. ie, For a subset $S \subseteq I$,

$$
\mu(S)=\sum_{x \in S} \mu(x)
$$

Distributional Computational Problems

Definition
A distributional computational problem is a pair (\mathcal{D}, μ) where $\mathcal{D}=(L, I)$ is a computational problem and μ is a probability measure on 1 .

Average-Case Complexity

Let I be a discrete set with size function $s: I \rightarrow N$ and atomic probability measure μ.

Average-Case Complexity

Let I be a discrete set with size function $s: I \rightarrow N$ and atomic probability measure μ.

Definition (Linear and polynomial on μ-average functions)
A function $f: I \rightarrow \mathbb{R}^{+}$is called linear on μ-average if

$$
\int_{I} f(w) s(w)^{-1} \mu(w)<\infty
$$

A function f is called polynomial on μ-average if $f \leq p(\ell)$ for some polynomial p and some linear on μ-average function ℓ.

Average-Case Complexity (Cont.)

Average behavior of functions can be described not just as linear or polynomial but with also respect to a more general function.

Average-Case Complexity (Cont.)

Average behavior of functions can be described not just as linear or polynomial but with also respect to a more general function.

Definition (t on μ-average function)
Let $f: I \rightarrow \mathbb{R}$ and $t: \mathbb{R} \rightarrow \mathbb{R}$ be two functions. Then f is t on μ-average if $f(w)=t(\ell(x))$ for some linear on μ-average function ℓ.

Average-Case Complexity (Cont.)

The average behavior of functions can be used to define average behavior of algorithms. Let \mathcal{D} be a stratified distributional algorithmic problem. Now, we let I denote the set of instances of \mathcal{D}.

Average-Case Complexity (Cont.)

The average behavior of functions can be used to define average behavior of algorithms. Let \mathcal{D} be a stratified distributional algorithmic problem. Now, we let I denote the set of instances of \mathcal{D}.

Definition (Time upper bound on μ-average)

Let \mathcal{A} be an algorithm. If the time function $T_{\mathcal{A}}: I \rightarrow \mathbb{N}$ has an upper bound which is t on μ-average, then we say that the algorithm has time upper bound $t(x)$ on μ-average. In particular, if $T_{\mathcal{A}}$ is polynomial on μ-average then \mathcal{A} has polynomial time on μ-average.

Average-Case Complexity Classes

We can now define the following average-case complexity classes:

Average-Case Complexity Classes

We can now define the following average-case complexity classes:

- AveP is the class of stratified distributional problems for which there exists a polynomial time on μ-average decision algorithm.

Average-Case Complexity Classes

We can now define the following average-case complexity classes:

- AveP is the class of stratified distributional problems for which there exists a polynomial time on μ-average decision algorithm.
- AveTime (t) is the class of stratified distributional problems for which, given time bound t, there exists a decision algorithm with time upper bound t on μ-average.

Deficiencies of Average-Case Complexity

Deficiencies of Average-Case Complexity

- Sometimes an algorithm computes relatively quickly on most inputs with bad behavior on only a small number of inputs

Deficiencies of Average-Case Complexity

- Sometimes an algorithm computes relatively quickly on most inputs with bad behavior on only a small number of inputs
- Despite computing quickly on most inputs, this bad behavior can cause high worst and average case complexities for the algorithm.

Deficiencies of Average-Case Complexity

- Sometimes an algorithm computes relatively quickly on most inputs with bad behavior on only a small number of inputs
- Despite computing quickly on most inputs, this bad behavior can cause high worst and average case complexities for the algorithm.
- Can only consider decidable problems

Deficiencies of Average-Case Complexity

- Sometimes an algorithm computes relatively quickly on most inputs with bad behavior on only a small number of inputs
- Despite computing quickly on most inputs, this bad behavior can cause high worst and average case complexities for the algorithm.
- Can only consider decidable problems
- Algorithm must terminate on all inputs

Generic-Case Complexity: Idea

Generic-case complexity was first introduced in Generic-case complexity, decision problems in group theory, and random walks by Kapovich, Myasnikov, Schupp, and Shpilrain.

Generic-Case Complexity: Idea

Generic-case complexity was first introduced in Generic-case complexity, decision problems in group theory, and random walks by Kapovich, Myasnikov, Schupp, and Shpilrain.

- Computes the behavior of algorithms on "most" inputs

Generic-Case Complexity: Idea

Generic-case complexity was first introduced in Generic-case complexity, decision problems in group theory, and random walks by Kapovich, Myasnikov, Schupp, and Shpilrain.

- Computes the behavior of algorithms on "most" inputs
- Can consider undecidable problems

Generic-Case Complexity: Idea

Generic-case complexity was first introduced in Generic-case complexity, decision problems in group theory, and random walks by Kapovich, Myasnikov, Schupp, and Shpilrain.

- Computes the behavior of algorithms on "most" inputs
- Can consider undecidable problems
- It is easier to find a fast generic algorithm than it is to find an algorithm which is fast on average

Generic-Case Complexity, First Definition

Generic-Case Complexity, First Definition

- Let X be a finite alphabet, X^{*} the set of finite words over X

Generic-Case Complexity, First Definition

- Let X be a finite alphabet, X^{*} the set of finite words over X
- Let ν be a probability distribution on X^{*}

Generic-Case Complexity, First Definition

- Let X be a finite alphabet, X^{*} the set of finite words over X
- Let ν be a probability distribution on X^{*}
- We say that a subset $T \subset X^{*}$ is generic with respect to ν if $\nu\left(X^{*} \backslash T\right)=0$.

Generic-Case Complexity, First Definition

- Let X be a finite alphabet, X^{*} the set of finite words over X
- Let ν be a probability distribution on X^{*}
- We say that a subset $T \subset X^{*}$ is generic with respect to ν if $\nu\left(X^{*} \backslash T\right)=0$.
- If an algorithm \mathcal{A} runs in polynomial time on all of the inputs from some subset T of X^{*} which is generic with respect to ν, then \mathcal{A} is said to have polynomial-time generic case complexity with respect to ν.

GCC, First Definition - Asymptotic Density

Method of measuring our sets.

GCC, First Definition - Asymptotic Density

Method of measuring our sets.
Definition (Asymptotic density, finite alphabet version)
Let X be a finite alphabet containing at least two elements and let $\left(X^{*}\right)^{k}$ be the set of k-tuples of words on X. Define the length of any k-tuple of words (w_{1}, \ldots, w_{k}) to be the sum $\sum_{i=1}^{k} w_{i}$, and let B_{n} denote the set of all k-tuples in $\left(X^{*}\right)^{k}$ of length less than or equal to $n, n \geq 0$.
For a subset $S \subseteq\left(X^{*}\right)^{k}$ define the asymptotic density $\rho(S)$ by

$$
\rho(S):=\limsup _{n \rightarrow \infty} \rho_{n}(S)
$$

where

$$
\rho_{n}(S):=\frac{\left|S \cap B_{n}\right|}{\left|B_{n}\right|} .
$$

When the limit $\lim _{n \rightarrow \infty} \rho(S)$ exists, we let $\hat{\rho}(S)$ denote $\rho(S)$.

GCC, First Definition

Definition (Generic sets, finite alphabet version)
A subset $S \subseteq\left(X^{*}\right)^{k}$ is a generic set if $\hat{\rho}(S)=1$. If $\rho_{n}(S)$ converges to 1 exponentially fast then S is said to be strongly generic.

GCC, First Definition - Generic Performance of Algorithm

Definition (Generic and strong generic performance of a partial algorithm)
Consider a decision problem $\mathcal{D} \subseteq\left(X^{*}\right)^{k}$ with complexity class
\mathcal{C}, and let \mathcal{A} be a correct partial algorithm for \mathcal{D}. (In other words, if \mathcal{A} reaches a decision then that decision is correct.) Say that \mathcal{A} solves \mathcal{D} with generic-case complexity \mathcal{C} if there is a generic subset $S \subseteq\left(X^{*}\right)^{k}$ such that for every $\tau \in S, \mathcal{A}$ terminates on τ in complexity bound \mathcal{C}. Furthermore, when S is strongly generic then \mathcal{A} solves the problem \mathcal{D} with generic case complexity strongly in \mathcal{C}.

Generic-Case Complexity, Another Definition

The next definition is similar to the previous one, but does not use asymptotic density.

Generic-Case Complexity: Pseudomeasures

- In Non-Commutative Cryptography and Complexity of Group-theoretic Problems by Myasnikov, Shpilrain, and Ushakov, generic-case complexity is also defined in terms of generic sets

Generic-Case Complexity: Pseudomeasures

- In Non-Commutative Cryptography and Complexity of Group-theoretic Problems by Myasnikov, Shpilrain, and Ushakov, generic-case complexity is also defined in terms of generic sets
- Generic sets are here defined via the concept of pseudomeasures which "measure" the sets

Generic-Case Complexity: Pseudomeasures

Definition (Pseudomeasure)
A pseudo-measure μ on I is a function $\mu: S \rightarrow \mathbb{R}^{+}$defined on a subset $S \subset \mathcal{P}(I)$ which satisfies:

Generic-Case Complexity: Pseudomeasures

Definition (Pseudomeasure)
A pseudo-measure μ on I is a function $\mu: S \rightarrow \mathbb{R}^{+}$defined on a subset $S \subset \mathcal{P}(I)$ which satisfies:

1) S contains I and is closed under disjoint union and complementation;

Generic-Case Complexity: Pseudomeasures

Definition (Pseudomeasure)
A pseudo-measure μ on I is a function $\mu: S \rightarrow \mathbb{R}^{+}$defined on a subset $S \subset \mathcal{P}(I)$ which satisfies:

1) S contains I and is closed under disjoint union and complementation;
2) $\mu(I)=1$, and

Generic-Case Complexity: Pseudomeasures

Definition (Pseudomeasure)
A pseudo-measure μ on I is a function $\mu: S \rightarrow \mathbb{R}^{+}$defined on a subset $S \subset \mathcal{P}(I)$ which satisfies:

1) S contains I and is closed under disjoint union and complementation;
2) $\mu(I)=1$, and
3) for any disjoint subset $A, B \in \mathcal{S}, \mu(A \cup B)=\mu(A)+\mu(B)$.

More specifically, we say that a pseudo-measure μ is atomic if $\mu(Q)$ is defined for any finite subset $Q \subseteq I$.

Generic-Case Complexity: Pseudomeasures

Definition (Generic set, pseudomeasure version)
Let μ be a pseudomeasure on a set I. A subset $Q \subseteq I$ is called generic if $\mu(Q)=1$ and is called negligible if $\mu(Q)=0$.

GCC, First Definition - Asymptotic Density

A psuedomeasure is given by asymptotic density.

GCC, First Definition - Asymptotic Density

A psuedomeasure is given by asymptotic density.
Definition (Asymptotic density, finite alphabet version)
Let X be a finite alphabet containing at least two elements and let $\left(X^{*}\right)^{k}$ be the set of k-tuples of words on X. Define the length of any k-tuple of words (w_{1}, \ldots, w_{k}) to be the sum $\sum_{i=1}^{k} w_{i}$, and let B_{n} denote the set of all k-tuples in $\left(X^{*}\right)^{k}$ of length less than or equal to $n, n \geq 0$.
For a subset $S \subseteq\left(X^{*}\right)^{k}$ define the asymptotic density $\rho(S)$ by

$$
\rho(S):=\limsup _{n \rightarrow \infty} \rho_{n}(S)
$$

where

$$
\rho_{n}(S):=\frac{\left|S \cap B_{n}\right|}{\left|B_{n}\right|} .
$$

When the limit $\lim _{n \rightarrow \infty} \rho(S)$ exists, we let $\hat{\rho}(S)$ denote $\rho(S)$.

Generic-Case Complexity: Pseudomeasures

Definition (Generic performance of an algorithm, pseudomeasure version)
Let \mathcal{D} be a distributional computational problem. A partial decision algorithm \mathcal{A} for \mathcal{D} generically solves the problem \mathcal{D} if the halting set $H_{\mathcal{A}}$ of \mathcal{A} is generic in $I=I_{\mathcal{D}}$ with respect to the given probability distribution $\mu=\mu_{\mathcal{D}}$ on I. In this case we say that \mathcal{D} is generically decidable.

Generic-Case Complexity: Pseudomeasures Generic Upper Bound

Let $s: I \rightarrow \mathbb{N}$ a size function on the set of inputs $I=I_{\mathcal{D}}$.
Definition (Generic upper bound)
A time function $f(n)$ is a generic upper bound for \mathcal{A} if the set

$$
H_{\mathcal{A}, f}=\left\{w \in I: T_{\mathcal{A}}(w) \leq f(s(w))\right\}
$$

is generic in I with respect to the spherical asymptotic density ρ_{μ}.

Generic-Case Complexity: A Probablistic Definition

- Kapovich provided a briefer definition of generic-case complexity in Musings on Generic-Case Complexity which approaches the concept from a probablistic point of view

Generic-Case Complexity: A Probablistic Definition

- Kapovich provided a briefer definition of generic-case complexity in Musings on Generic-Case Complexity which approaches the concept from a probablistic point of view
- Previous definitions of generic-case complexity have required first a definition of a generic set - Kapovich's definition does not.

Generic-Case Complexity: A Probablistic Definition

- Kapovich provided a briefer definition of generic-case complexity in Musings on Generic-Case Complexity which approaches the concept from a probablistic point of view
- Previous definitions of generic-case complexity have required first a definition of a generic set - Kapovich's definition does not.
- His definition does not require size functions.

Generic-Case Complexity: A Probablistic Definition

- Instead of considering generic subsets, Kapovich looks at the probability that certain events occur.

Generic-Case Complexity: A Probablistic Definition

- Instead of considering generic subsets, Kapovich looks at the probability that certain events occur.
- Look at the probability that an input generated by a random process terminates in time $\mathcal{O}(f(n))$.

Generic-Case Complexity: A Probablistic Definition

- Instead of considering generic subsets, Kapovich looks at the probability that certain events occur.
- Look at the probability that an input generated by a random process terminates in time $\mathcal{O}(f(n))$.
- A random process is a collection $\{W(i): i \in I\}$ of random variables for some index set I. When I is discrete, we say that this is a discrete random process and can denote the process by

$$
W_{1}, W_{2}, \ldots, W_{n}, \ldots
$$

Generic-Case Complexity: A Probablistic Definition

Shpilrain's idea for the following definition is to replace the concept of a size function which measures inputs of size n with a random process that generates an input for the algorithm in n steps.

Generic-Case Complexity: A Probablistic Definition

Definition (Generic performance of an algorithm with respect to a random process)
Let Ω be the set of inputs for a partial decision algorithm \mathcal{A} with values in a set U. Consider a discrete random time process $\mathcal{W}=W_{1}, W_{2}, \ldots, W_{n}, \ldots$ which generates an input $W_{n} \in \Omega$ after n steps and let f be a function such that $f(n) \geq 0$. Say that \mathcal{A} has generic-case complexity less than or equal to f with respect to \mathcal{W} if

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[t_{\mathcal{A}}\left(W_{n}\right) \leq f(n)\right]=1,
$$

where $t_{\mathcal{A}}\left(W_{n}\right)$ denotes the time it takes for the algorithm \mathcal{A} to compute on input W_{n}. If this limit converges exponentially fast, say that \mathcal{U} has strong generic-case time complexity $\leq f$ with respect to \mathcal{W}.

Analysis of Generic-Case Complexity

When analyzing problems, it is important to choose the way in which we formulate the question corresponds to the definition of generic-case complexity we are using.

Analysis of Generic-Case Complexity

The original definition for generic sets is given in terms of the asymptotic density of subsets of words from some finite alphabet.

Analysis of Generic-Case Complexity

The original definition for generic sets is given in terms of the asymptotic density of subsets of words from some finite alphabet.

- Computing the asymptotic density function requires defining a length function

Analysis of Generic-Case Complexity

The original definition for generic sets is given in terms of the asymptotic density of subsets of words from some finite alphabet.

- Computing the asymptotic density function requires defining a length function
- It also requires that we are able to perform computations with B_{n}, sets of k-tuples of words with length at most n.

Analysis of Generic-Case Complexity

The original definition for generic sets is given in terms of the asymptotic density of subsets of words from some finite alphabet.

- Computing the asymptotic density function requires defining a length function
- It also requires that we are able to perform computations with B_{n}, sets of k-tuples of words with length at most n.
- Ultimately, we must choose the length function such that these computations have meaning, and the choice of length function is not always obvious.

Analysis of Generic-Case Complexity

- Some problems persist the second definition of generic sets described:

Analysis of Generic-Case Complexity

- Some problems persist the second definition of generic sets described:
- In order to define generic sets we still are required to pick a way of measuring subsets (in this case pseudomeasure)

Analysis of Generic-Case Complexity

- Some problems persist the second definition of generic sets described:
- In order to define generic sets we still are required to pick a way of measuring subsets (in this case pseudomeasure)
- The choice of pseudomeasure is still not always obvious or natural

Analysis of Generic-Case Complexity

Analysis of Generic-Case Complexity

- The probablistic definition has its own deficiencies and advantages:

Analysis of Generic-Case Complexity

- The probablistic definition has its own deficiencies and advantages:
- A deficiency: Assumes that the elements generated at each step n in the chosen random process are valid inputs for the algorithm

Analysis of Generic-Case Complexity

- The probablistic definition has its own deficiencies and advantages:
- A deficiency: Assumes that the elements generated at each step n in the chosen random process are valid inputs for the algorithm
- An advantage: does not require that we define any sort of size function, and instead just uses the time used by a random process to generate elements as their "size."

Commutative Cryptography

[^5]
Commutative Cryptography

- Whitfield Diffie and Martin Hellman revolutionized the field of cryptography by laying the groundwork for secure key exchange in their groundbreaking 1976 paper. ${ }^{4}$

[^6]
Commutative Cryptography

- Whitfield Diffie and Martin Hellman revolutionized the field of cryptography by laying the groundwork for secure key exchange in their groundbreaking 1976 paper. ${ }^{4}$
- Diffie and Hellman introduced public key (or asymmetric) cryptography, where two or more parties may exchange information by communicating entirely over a public channel

[^7]
Commutative Cryptography

- Whitfield Diffie and Martin Hellman revolutionized the field of cryptography by laying the groundwork for secure key exchange in their groundbreaking 1976 paper. ${ }^{4}$
- Diffie and Hellman introduced public key (or asymmetric) cryptography, where two or more parties may exchange information by communicating entirely over a public channel
- Asymmetric encryption schemes: Diffie Hellman, ElGamal, and Cramer-Shoup

[^8]
Commutative Cryptography

- Whitfield Diffie and Martin Hellman revolutionized the field of cryptography by laying the groundwork for secure key exchange in their groundbreaking 1976 paper. ${ }^{4}$
- Diffie and Hellman introduced public key (or asymmetric) cryptography, where two or more parties may exchange information by communicating entirely over a public channel
- Asymmetric encryption schemes: Diffie Hellman, ElGamal, and Cramer-Shoup
- Use commutative groups, rely on the hardness of the discrete logarithm problem.

[^9]
Discrete Log Problem

Discrete Log Problem: Let G be a cyclic group and let $g \in G$ be a generator of G. The discrete logarithm problem in G is to compute $\log _{g} h$ for an element $h \in G$.

[^10]
Discrete Log Problem

Discrete Log Problem: Let G be a cyclic group and let $g \in G$ be a generator of G. The discrete logarithm problem in G is to compute $\log _{g} h$ for an element $h \in G$.

- The discrete log problem is used in many cryptosystems today because it is believed to be hard for many groups G (e.g., cyclic groups of prime order)

[^11]
Discrete Log Problem

Discrete Log Problem: Let G be a cyclic group and let $g \in G$ be a generator of G. The discrete logarithm problem in G is to compute $\log _{g} h$ for an element $h \in G$.

- The discrete log problem is used in many cryptosystems today because it is believed to be hard for many groups G (e.g., cyclic groups of prime order)
- Peter Shor presented an algorithm in 1994 that is able to solve the discrete logarithm in polynomial time on a quantum computer. ${ }^{5}$

[^12]
Non-Commutative Cryptography

- Recently, cryptosystems have been proposed which instead use non-commutative groups.

[^13]
Non-Commutative Cryptography

- Recently, cryptosystems have been proposed which instead use non-commutative groups.
- Anshel-Anshel-Goldfeld Key Exchange ${ }^{6}$

[^14]
Non-Commutative Cryptography

- Recently, cryptosystems have been proposed which instead use non-commutative groups.
- Anshel-Anshel-Goldfeld Key Exchange ${ }^{6}$
- Non-Commutative Diffie-Hellman ${ }^{7}$

[^15]
Non-Commutative Cryptography

- Recently, cryptosystems have been proposed which instead use non-commutative groups.
- Anshel-Anshel-Goldfeld Key Exchange ${ }^{6}$
- Non-Commutative Diffie-Hellman ${ }^{7}$
- Non-Commutative ElGamal ${ }^{8}$

[^16]
Non-Commutative Cryptography

- Recently, cryptosystems have been proposed which instead use non-commutative groups.
- Anshel-Anshel-Goldfeld Key Exchange ${ }^{6}$
- Non-Commutative Diffie-Hellman ${ }^{7}$
- Non-Commutative ElGamal ${ }^{8}$
- The structure of these non-commutative groups causes these cryptosystems to rely on other problems for security, such as the difficulty of the conjugacy search problem.

[^17]
Anshel-Anshel-Goldfeld

This protocol uses the difficulty of the word problem in some non-commutative groups as its foundation.

Anshel-Anshel-Goldfeld

Public Information: A tuple ($G, \beta, \gamma_{1}, \gamma_{2}$), where G is a group and $\beta, \gamma_{1}, \gamma_{2}: G \times G \rightarrow G$ are the functions

$$
\begin{aligned}
\beta(u, v) & =u^{-1} v u \text { (conjugation) } \\
\gamma_{1}(u, v) & =u^{-1} v \\
\gamma_{2}(u, v) & =v^{-1} u
\end{aligned}
$$

Anshel-Anshel-Goldfeld

Public Information: A tuple ($G, \beta, \gamma_{1}, \gamma_{2}$), where G is a group and $\beta, \gamma_{1}, \gamma_{2}: G \times G \rightarrow G$ are the functions

$$
\begin{aligned}
\beta(u, v) & =u^{-1} v u \text { (conjugation) } \\
\gamma_{1}(u, v) & =u^{-1} v \\
\gamma_{2}(u, v) & =v^{-1} u
\end{aligned}
$$

Observe that these functions satisfy the following three conditions:

1. $\beta\left(u, v_{1} \cdot v_{2}\right)=\beta\left(u, v_{1}\right) \cdot \beta\left(u, v_{2}\right)$ for all $u, v_{1}, v_{2} \in G$.
2. $\gamma_{1}(u, \beta(v, u))=\gamma_{2}(v, \beta(u, v))$ for all $u, v \in G$.
3. If $x \in G$ is private, it is infeasable to determine x given $v_{i} \in G$ and $\beta\left(x, v_{i}\right)$ for $1 \leq i \leq k$.

Anshel-Anshel-Goldfeld

The Protocol:

Anshel-Anshel-Goldfeld

The Protocol:

1. Two users A and B are each publicly assigned a subgroup of G,

$$
\begin{aligned}
& S_{A}=\left\langle s_{1}, s_{2}, \ldots, s_{m}\right\rangle, \\
& S_{B}=\left\langle t_{1}, t_{2}, \ldots, t_{n}\right\rangle,
\end{aligned}
$$

respectively.

Anshel-Anshel-Goldfeld

The Protocol:

1. Two users A and B are each publicly assigned a subgroup of G,

$$
\begin{aligned}
& S_{A}=\left\langle s_{1}, s_{2}, \ldots, s_{m}\right\rangle, \\
& S_{B}=\left\langle t_{1}, t_{2}, \ldots, t_{n}\right\rangle,
\end{aligned}
$$

respectively.
2. A selects $a \in S_{A}$ and B selects $b \in S_{B}$. These are the users' secret keys.

Anshel-Anshel-Goldfeld

The Protocol:

1. Two users A and B are each publicly assigned a subgroup of G,

$$
\begin{aligned}
& S_{A}=\left\langle s_{1}, s_{2}, \ldots, s_{m}\right\rangle, \\
& S_{B}=\left\langle t_{1}, t_{2}, \ldots, t_{n}\right\rangle,
\end{aligned}
$$

respectively.
2. A selects $a \in S_{A}$ and B selects $b \in S_{B}$. These are the users' secret keys.
3. A computes and transmits $\beta\left(a, t_{i}\right)$ for $1 \leq i \leq n$, while user B computes and transmits $\beta\left(b, s_{i}\right)$ for $1 \leq i \leq m$.

Anshel-Anshel-Goldfeld

The Protocol:

1. Two users A and B are each publicly assigned a subgroup of G,

$$
\begin{aligned}
& S_{A}=\left\langle s_{1}, s_{2}, \ldots, s_{m}\right\rangle, \\
& S_{B}=\left\langle t_{1}, t_{2}, \ldots, t_{n}\right\rangle,
\end{aligned}
$$

respectively.
2. A selects $a \in S_{A}$ and B selects $b \in S_{B}$. These are the users' secret keys.
3. A computes and transmits $\beta\left(a, t_{i}\right)$ for $1 \leq i \leq n$, while user B computes and transmits $\beta\left(b, s_{i}\right)$ for $1 \leq i \leq m$.
4. \boldsymbol{A} computes $\gamma_{1}(a, \beta(b, a))$, B computes $\gamma_{2}(b, \beta(a, b))$. The key κ is:

$$
\kappa=\gamma_{1}(a, \beta(b, a))=\gamma_{2}(b, \beta(a, b))=a^{-1} b^{-1} a b
$$

AAG and the CSP

[^18]
AAG and the CSP

- Solving the simultaneous conjugacy search problem for $a^{-1} t_{i} a$ and $b^{-1} s_{j} b$ for $1 \leq i \leq n$ and $1 \leq j \leq m$ would yield a and b, from which the secret key could be derived.

[^19]
AAG and the CSP

- Solving the simultaneous conjugacy search problem for $a^{-1} t_{i} a$ and $b^{-1} s_{j} b$ for $1 \leq i \leq n$ and $1 \leq j \leq m$ would yield a and b, from which the secret key could be derived.
- However, the conjugacy search problem in G does not necessarily give us a and b as words in A and B, respectively ${ }^{9}$

[^20]
AAG and the CSP

- Solving the simultaneous conjugacy search problem for $a^{-1} t_{i} a$ and $b^{-1} s_{j} b$ for $1 \leq i \leq n$ and $1 \leq j \leq m$ would yield a and b, from which the secret key could be derived.
- However, the conjugacy search problem in G does not necessarily give us a and b as words in A and B, respectively ${ }^{9}$
- Thus the authors explain we must also solve the membership search problem, which states that given a and s_{1}, \ldots, s_{m}, we must find an expression of a as a word in s_{1}, \ldots, s_{m}. They claim that this problem is hard in many groups.

[^21]
AAG and the CSP

Despite this, we would not wish for a platform group for the cryptosystem to have a fast solution for the conjugacy search problem, because it would provide an adversary with a simple attack, even if the attack might not work in every instance.

Platform Groups

It is necessary to find groups which are secure enough to serve as platforms for non-commutative cryptosystems. Shpilrain provided a collection of properties which a platform group should satisfy: ${ }^{10}$

[^22]
Platform Groups

It is necessary to find groups which are secure enough to serve as platforms for non-commutative cryptosystems. Shpilrain provided a collection of properties which a platform group should satisfy: ${ }^{10}$
(P1) We must have previous results regarding the conjugacy search problem in the group.

[^23]
Platform Groups

It is necessary to find groups which are secure enough to serve as platforms for non-commutative cryptosystems. Shpilrain provided a collection of properties which a platform group should satisfy: ${ }^{10}$
(P1) We must have previous results regarding the conjugacy search problem in the group.
(P2) In order to have efficient key extraction within the protocol, the word problem should have a "fast" solution by a deterministic algorithm.

[^24]
Platform Groups

It is necessary to find groups which are secure enough to serve as platforms for non-commutative cryptosystems. Shpilrain provided a collection of properties which a platform group should satisfy: ${ }^{10}$
(P1) We must have previous results regarding the conjugacy search problem in the group.
(P2) In order to have efficient key extraction within the protocol, the word problem should have a "fast" solution by a deterministic algorithm.
(P3) For security, the CSP should not have a "fast" (subexponential) algorithm by a deterministic algorithm.

[^25]
Platform Groups

It is necessary to find groups which are secure enough to serve as platforms for non-commutative cryptosystems. Shpilrain provided a collection of properties which a platform group should satisfy: ${ }^{10}$
(P1) We must have previous results regarding the conjugacy search problem in the group.
(P2) In order to have efficient key extraction within the protocol, the word problem should have a "fast" solution by a deterministic algorithm.
(P3) For security, the CSP should not have a "fast" (subexponential) algorithm by a deterministic algorithm.
(P4) We should not be able to recover x from $x^{-1} a x$.

[^26]
Previous results

This provides motivation for studying the generic-case complexity of the conjugacy search problem in various non-commutative groups.

HNN-Extensions and Miller's Groups

- Miller constructed groups for which the word problem is decidable but the conjugacy problem is undecidable in 1992. ${ }^{11}$

[^27]
HNN-Extensions and Miller's Groups

- Miller constructed groups for which the word problem is decidable but the conjugacy problem is undecidable in 1992. ${ }^{11}$
- These properties appear promising for a platform group candidate (In fact, Shpilrain suggested these groups for further consideration in 2004^{12}).

[^28]
HNN-Extensions and Miller's Groups

- Miller constructed groups for which the word problem is decidable but the conjugacy problem is undecidable in 1992. ${ }^{11}$
- These properties appear promising for a platform group candidate (In fact, Shpilrain suggested these groups for further consideration in 2004^{12}).
- However (as Shpilrain pointed out), the conjugacy problem is undecidable generally, but no results yet existed on its difficulty generically.

[^29]
HNN-Extensions and Miller's Groups

In 2007, Borovik, Myasnikov, and Remeslennikov addressed this question. ${ }^{13}$ They show that:

[^30]
HNN-Extensions and Miller's Groups

In 2007, Borovik, Myasnikov, and Remeslennikov addressed this question. ${ }^{13}$ They show that:

- The conjugacy search problem amalgamated free products and HNN-extensions of groups is generically easy even though it can be undecidable generally

[^31]
HNN-Extensions and Miller's Groups

In 2007, Borovik, Myasnikov, and Remeslennikov addressed this question. ${ }^{13}$ They show that:

- The conjugacy search problem amalgamated free products and HNN-extensions of groups is generically easy even though it can be undecidable generally
- The CSP in Miller's group is easy on most inputs, even though it is undecidable generally.

[^32]
HNN-extensions: Definition

HNN-extensions: Definition

- Let $H=\langle X \mid \mathcal{R}\rangle$ be a group

HNN-extensions: Definition

- Let $H=\langle X \mid \mathcal{R}\rangle$ be a group
- Let $A=\left\langle U_{i} \mid i \in I\right\rangle$ and $B=\left\langle V_{i} \mid i \in I\right\rangle$ be isomorphic subgroups of H.

HNN-extensions: Definition

- Let $H=\langle X \mid \mathcal{R}\rangle$ be a group
- Let $A=\left\langle U_{i} \mid i \in I\right\rangle$ and $B=\left\langle V_{i} \mid i \in I\right\rangle$ be isomorphic subgroups of H.
- Let $\phi: A \rightarrow B$ be an isomorphism given by $U_{i} \mapsto V_{i}$ for all i.

HNN-extensions: Definition

- Let $H=\langle X \mid \mathcal{R}\rangle$ be a group
- Let $A=\left\langle U_{i} \mid i \in I\right\rangle$ and $B=\left\langle V_{i} \mid i \in I\right\rangle$ be isomorphic subgroups of H.
- Let $\phi: A \rightarrow B$ be an isomorphism given by $U_{i} \mapsto V_{i}$ for all i.
- The HNN-extension of the base group H with the stable letter t and associated subgroups A and B is given by

$$
G=\left\langle X, t \mid R, t^{-1} U_{i} t=V_{i}, i \in I\right\rangle .
$$

The authors also note that G can be written also as $\left\langle H, t \mid t^{-1} A t=B, \phi\right\rangle$.

Reduced Forms

The reduced form of elements in G :

Reduced Forms

The reduced form of elements in G :

- Every $g \in G$ can be written

$$
g=w_{0} t^{\epsilon_{1}} w_{1} \cdots t^{\epsilon_{n}} w_{n}
$$

where $\epsilon_{i}= \pm 1$ for all i and w_{i} is a word in X.

Reduced Forms

The reduced form of elements in G :

- Every $g \in G$ can be written

$$
g=w_{0} t^{\epsilon_{1}} w_{1} \cdots t^{\epsilon_{n}} w_{n}
$$

where $\epsilon_{i}= \pm 1$ for all i and w_{i} is a word in X.

- This word is called reduced if it contains no subwords of the form $t^{-1} w_{i} t$ for $w_{i} \in A$ or $t w_{i} t^{-1}$ for $w_{i} \in B$

Reduced Forms

The reduced form of elements in G :

- Every $g \in G$ can be written

$$
g=w_{0} t^{\epsilon_{1}} w_{1} \cdots t^{\epsilon_{n}} w_{n}
$$

where $\epsilon_{i}= \pm 1$ for all i and w_{i} is a word in X.

- This word is called reduced if it contains no subwords of the form $t^{-1} w_{i} t$ for $w_{i} \in A$ or $t w_{i} t^{-1}$ for $w_{i} \in B$
- Subwords of the above form are called pinches

Reduced Forms

The reduced form of elements in G :

- Every $g \in G$ can be written

$$
g=w_{0} t^{\epsilon_{1}} w_{1} \cdots t^{\epsilon_{n}} w_{n}
$$

where $\epsilon_{i}= \pm 1$ for all i and w_{i} is a word in X.

- This word is called reduced if it contains no subwords of the form $t^{-1} w_{i} t$ for $w_{i} \in A$ or $t w_{i} t^{-1}$ for $w_{i} \in B$
- Subwords of the above form are called pinches
- The length of the word is the number of occurrences of t_{i} in a reduced form of a word.

Cyclically Reduced Forms

The reduced word

$$
g=h t^{\epsilon_{1}} s_{1} \cdots t^{\epsilon_{n}} s_{n}
$$

is called cyclically reduced if either:

Cyclically Reduced Forms

The reduced word

$$
g=h t^{\epsilon_{1}} s_{1} \cdots t^{\epsilon_{n}} s_{n}
$$

is called cyclically reduced if either:

- If $n=0$, then $h \in A \cup B$ or h is not conjugate in G to any element of $A \cup B$, or

Cyclically Reduced Forms

The reduced word

$$
g=h t^{\epsilon_{1}} s_{1} \cdots t^{\epsilon_{n}} s_{n}
$$

is called cyclically reduced if either:

- If $n=0$, then $h \in A \cup B$ or h is not conjugate in G to any element of $A \cup B$, or
- If $n>0$, then either:
- $\epsilon_{1}=\epsilon_{n}$
- If $\epsilon_{1}=-1$, then $s_{n} h \notin A$
- if $\epsilon_{1}=1$, then $s_{n} h \notin B$.

Unique Normal Forms

Let S_{A} and S_{B} be systems of right coset representatives of A and B in H. The normal form of an element g is a reduced form

$$
g=h_{0} t^{\epsilon_{1}} h_{1} \cdots t^{\epsilon_{n}} h_{n}
$$

satisfying all of following:

Unique Normal Forms

Let S_{A} and S_{B} be systems of right coset representatives of A and B in H. The normal form of an element g is a reduced form

$$
g=h_{0} t^{\epsilon_{1}} h_{1} \cdots t^{\epsilon_{n}} h_{n}
$$

satisfying all of following:

- $h_{0} \in H$

Unique Normal Forms

Let S_{A} and S_{B} be systems of right coset representatives of A and B in H. The normal form of an element g is a reduced form

$$
g=h_{0} t^{\epsilon_{1}} h_{1} \cdots t^{\epsilon_{n}} h_{n}
$$

satisfying all of following:

- $h_{0} \in H$
- If $\epsilon_{i}=-1$ then $h_{i} \in S_{A}$

Unique Normal Forms

Let S_{A} and S_{B} be systems of right coset representatives of A and B in H. The normal form of an element g is a reduced form

$$
g=h_{0} t^{\epsilon_{1}} h_{1} \cdots t^{\epsilon_{n}} h_{n}
$$

satisfying all of following:

- $h_{0} \in H$
- If $\epsilon_{i}=-1$ then $h_{i} \in S_{A}$
- If $\epsilon_{i}=1$ then $h_{i} \in S_{B}$.

Algorithm: Reduced Forms

Input: Words of the form $g=w_{0} t^{\epsilon_{1}} w_{1} \cdots t^{\epsilon_{n}} w_{n}$.
Algorithm 1 Reduced forms in HNN-extensions
1: while The word g contains a pinch $t^{\epsilon_{i}} w_{i} t^{\epsilon_{i+1}}$ do
if $w_{i} \in A$ and $\epsilon_{i}=-1$ then
Rewrite w_{i} in the generators $U_{j}, j \in I$, for A.
Replace $t^{-1} w_{i} t$ with $\phi\left(w_{i}\right)$ using substitution
$t^{-1} U_{j} t \rightarrow V_{j}$.
else if $w_{i} \in B$ and $\epsilon_{i}=1$ then
Rewrite w_{i} in the generators $V_{j}, j \in I$, for B.
Replace $t w_{i} t^{-1}$ with $\phi^{-1}\left(w_{i}\right)$ using substitution
$t V_{j} t^{-1} \rightarrow U_{j}$.
end if
end while

Algorithm: Reduced Forms

This algorithm halts in a finite number of steps with correct output whenever the Membership Search Problem is decidable for subgroups A and B.

Algorithm: Normal Forms

Input: any word g in the standard generators of G.
Let S_{A} and S_{B} be recursive sets of representatives of A and B in H.

Algorithm: Normal Forms

Input: any word g in the standard generators of G.
Let S_{A} and S_{B} be recursive sets of representatives of A and B in H.

Algorithm 3 Normal forms in HNN-extensions
1: while $g \in G$ is not in normal form do

2 : $s \in S_{A}$.

Replace th with $\phi^{-1}(c) t s$, where $h=c s, c \in B$, and $s \in S_{B}$.

Replace $t^{\epsilon} t^{-\epsilon}$ with 1.
end while

Algorithm: Normal Forms

The Coset Representative Search Problem asks us to find two algorithms for which, for a word $w \in F(X)$, we find a representative for $A w$ in S_{A} and $B w$ in S_{B}.

- This algorithm uses the Coset Representative Search Problem: for a word $w \in F(X)$, find a representative for $A w$ in S_{A} and $B w$ in S_{B}

Algorithm: Normal Forms

The Coset Representative Search Problem asks us to find two algorithms for which, for a word $w \in F(X)$, we find a representative for $A w$ in S_{A} and $B w$ in S_{B}.

- This algorithm uses the Coset Representative Search Problem: for a word $w \in F(X)$, find a representative for $A w$ in S_{A} and $B w$ in S_{B}
- Uses the Membership Search Problem, because if s_{w} is the representative of $A w$ in S_{A}, then $w s_{w}^{-1} \in A$. Applying the algorithm for the Membership Search Problem to $w s_{w}^{-1}$ yields a representation of w as $w=a s_{w}$ for $a \in A$.

Algorithm: Normal Forms

The Coset Representative Search Problem asks us to find two algorithms for which, for a word $w \in F(X)$, we find a representative for $A w$ in S_{A} and $B w$ in S_{B}.

- This algorithm uses the Coset Representative Search Problem: for a word $w \in F(X)$, find a representative for $A w$ in S_{A} and $B w$ in S_{B}
- Uses the Membership Search Problem, because if s_{w} is the representative of $A w$ in S_{A}, then $w s_{w}^{-1} \in A$. Applying the algorithm for the Membership Search Problem to $w s_{w}^{-1}$ yields a representation of w as $w=a s_{w}$ for $a \in A$.
- If these problems are decidable in subgroups A and B in H with respect to S_{A} and S_{B}, then this algorithm halts in finite steps with the correct output.

Algorithm: Cyclically reduced normal forms

- The authors provide an algorithm for computing cyclically reduced normal forms in G.

Algorithm: Cyclically reduced normal forms

- The authors provide an algorithm for computing cyclically reduced normal forms in G.
- It uses:

Algorithm: Cyclically reduced normal forms

- The authors provide an algorithm for computing cyclically reduced normal forms in G.
- It uses:
- The Membership Search Problem

Algorithm: Cyclically reduced normal forms

- The authors provide an algorithm for computing cyclically reduced normal forms in G.
- It uses:
- The Membership Search Problem
- The Coset Representative Search Problem

Algorithm: Cyclically reduced normal forms

- The authors provide an algorithm for computing cyclically reduced normal forms in G.
- It uses:
- The Membership Search Problem
- The Coset Representative Search Problem
- The Conjugacy Membership Search Problem, which takes as input $g \in H$, and asks whether g is a conjugate of an element from A or B, and if so, to find an element in A or B, respectively, which is a conjugator.

Bad Pairs

- Let $C=A \cup B$. A bad pair (c, g) to be an element of $C \times G$ where $c \neq 1, g \notin C$, and $g c g^{-1} \in C$.

Bad Pairs

- Let $C=A \cup B$. A bad pair (c, g) to be an element of $C \times G$ where $c \neq 1, g \notin C$, and $g c g^{-1} \in C$.
- The conjugacy problem is "hard" in bad pairs.

Bad Pairs

Let $c \in C \backslash\{1\}$ and $g \in G \backslash C$, where $g=h p_{1} \cdots p_{k}$ in normal form.

Bad Pairs

Let $c \in C \backslash\{1\}$ and $g \in G \backslash C$, where $g=h p_{1} \cdots p_{k}$ in normal form.
(c, g) is a bad pair if and only if the following system of equations has solutions $c_{1}, \ldots, c_{k+1} \in C$:

Bad Pairs

Let $c \in C \backslash\{1\}$ and $g \in G \backslash C$, where $g=h p_{1} \cdots p_{k}$ in normal form.
(c, g) is a bad pair if and only if the following system of equations has solutions $c_{1}, \ldots, c_{k+1} \in C$:

$$
B_{c, b}= \begin{cases}p_{k} c p_{k}^{-1} & =c_{1} \\ p_{k-1} c_{1} p_{k-1}^{-1} & =c_{2} \\ & \vdots \\ p_{1} c_{k-1} p_{1}^{-1} & =c_{k} \\ h c_{k} h^{-1} & =c_{k+1} .\end{cases}
$$

Solutions To The System of Equations

Let g and g^{\prime} be elements in G with normal forms $g=h p_{1} \cdots p_{k}$ and $g^{\prime}=h^{\prime} p_{1}^{\prime} \cdots p_{k}^{\prime}$. The equation $g c=c^{\prime} g^{\prime}$ has solution $c, c^{\prime} \in C$ if and only if the following system of equations in $c_{1}, c_{2}, \ldots, c_{k}$ has a solution in C :

$$
S_{g, g^{\prime}}= \begin{cases}p_{k} c & =c_{1} p_{k}^{\prime} \\ p_{k-1} c_{1} & =c_{2} p_{k-1}^{\prime} \\ & \vdots \\ p_{1} c_{k-1} & =c_{k} p_{1}^{\prime} \\ h c_{k} & =c^{\prime} h^{\prime} .\end{cases}
$$

The principal system of equations is comprised of the first k equations from $S_{g, g^{\prime}}$ and is denoted by $P S_{g, g^{\prime}}$. Let $E_{g, g^{\prime}}$ denote the set of all elements $c \in C$ such that $P S_{g, g^{\prime}}$ has a solution.

The Black Hole

The Black Hole of the conjugacy problem in G is given by

$$
\mathbb{B} \mathbb{H}=N_{G}^{*}(C)=\left\{g \mid C^{g} \cap C \neq 1\right\}
$$

where a bad pair (c, g) satisfies $c \in Z_{g}(C)=\left\{c \in C \mid c^{g^{-1}} \in C\right\}$ and $g \in N_{G}^{*}(C) \backslash C$.

The Black Hole

The Black Hole of the conjugacy problem in G is given by

$$
\mathbb{B} H=N_{G}^{*}(C)=\left\{g \mid C^{g} \cap C \neq 1\right\}
$$

where a bad pair (c, g) satisfies $c \in Z_{g}(C)=\left\{c \in C \mid c^{g^{-1}} \in C\right\}$ and $g \in N_{G}^{*}(C) \backslash C$.

- Elements in the black hole $\mathbb{B H}$ are called singular

The Black Hole

The Black Hole of the conjugacy problem in G is given by

$$
\mathbb{B} H \mathcal{H}=N_{G}^{*}(C)=\left\{g \mid C^{g} \cap C \neq 1\right\}
$$

where a bad pair (c, g) satisfies $c \in Z_{g}(C)=\left\{c \in C \mid c^{g^{-1}} \in C\right\}$ and $g \in N_{G}^{*}(C) \backslash C$.

- Elements in the black hole $\mathbb{B H}$ are called singular
- Elements outside of $\mathbb{B H}$ are called regular.

When is an item regular?

- $u M v$ is a G-shift of M, where M is a subset of G and $u, v \in G$.

When is an item regular?

- $u M v$ is a G-shift of M, where M is a subset of G and $u, v \in G$.
- Let $\operatorname{SI}(\mathcal{M}, G)$, for a collection \mathcal{M} of subsets of G, denote the least set of subsets of G such that:

When is an item regular?

- $u M v$ is a G-shift of M, where M is a subset of G and $u, v \in G$.
- Let $\operatorname{SI}(\mathcal{M}, G)$, for a collection \mathcal{M} of subsets of G, denote the least set of subsets of G such that:
- $\operatorname{SI}(\mathcal{M}, G)$ contains \mathcal{M}
- it is closed under both G-shifts and finite intersections.

When is an item regular?

- $u M v$ is a G-shift of M, where M is a subset of G and $u, v \in G$.
- Let $\operatorname{SI}(\mathcal{M}, G)$, for a collection \mathcal{M} of subsets of G, denote the least set of subsets of G such that:
- SI($\mathcal{M}, G)$ contains \mathcal{M}
- it is closed under both G-shifts and finite intersections.
- $\operatorname{Sub}(C)$ is the set of all finitely generated subgroups of C.

When is an item regular?

- $u M v$ is a G-shift of M, where M is a subset of G and $u, v \in G$.
- Let $S I(\mathcal{M}, G)$, for a collection \mathcal{M} of subsets of G, denote the least set of subsets of G such that:
- $\operatorname{SI}(\mathcal{M}, G)$ contains \mathcal{M}
- it is closed under both G-shifts and finite intersections.
- $\operatorname{Sub}(C)$ is the set of all finitely generated subgroups of C.
- The Cardinality Search Problem on $S I(\operatorname{Sub}(C), H)$ takes a set $D \in S I(\operatorname{Sub}(C), H)$ as input and asks us to determine whether D is empty, finite, or infinite. If D is finite and nonempty, it asks us to list all elements of D.

Regular Element Criterion

- If the Cardinality Search Problem in decidable in $S I(\operatorname{Sub}(C), H)$, then $E_{g, g^{\prime}}$ can be found effectively when given g and g^{\prime}.

Regular Element Criterion

- If the Cardinality Search Problem in decidable in $S I(\operatorname{Sub}(C), H)$, then $E_{g, g^{\prime}}$ can be found effectively when given g and g^{\prime}.
- Criterion for determining if an element is regular in a HNN-extension $G=\left\langle H, t \mid t^{-1} A t=B\right\rangle$:

Regular Element Criterion

- If the Cardinality Search Problem in decidable in $S I(\operatorname{Sub}(C), H)$, then $E_{g, g^{\prime}}$ can be found effectively when given g and g^{\prime}.
- Criterion for determining if an element is regular in a HNN-extension $G=\left\langle H, t \mid t^{-1} A t=B\right\rangle$:
- H allows algorithms for the search membership problem in H,

Regular Element Criterion

- If the Cardinality Search Problem in decidable in $S I(\operatorname{Sub}(C), H)$, then $E_{g, g^{\prime}}$ can be found effectively when given g and g^{\prime}.
- Criterion for determining if an element is regular in a HNN-extension $G=\left\langle H, t \mid t^{-1} A t=B\right\rangle$:
- H allows algorithms for the search membership problem in H,
- the coset representaitve search problem in H,

Regular Element Criterion

- If the Cardinality Search Problem in decidable in $S I(\operatorname{Sub}(C), H)$, then $E_{g, g^{\prime}}$ can be found effectively when given g and g^{\prime}.
- Criterion for determining if an element is regular in a HNN-extension $G=\left\langle H, t \mid t^{-1} A t=B\right\rangle$:
- H allows algorithms for the search membership problem in H,
- the coset representaitve search problem in H,
- the cardinality search problem for $\operatorname{SI}(\operatorname{Sub}(C), H)$ in H

Regular Element Criterion

- If the Cardinality Search Problem in decidable in $S I(\operatorname{Sub}(C), H)$, then $E_{g, g^{\prime}}$ can be found effectively when given g and g^{\prime}.
- Criterion for determining if an element is regular in a HNN-extension $G=\left\langle H, t \mid t^{-1} A t=B\right\rangle$:
- H allows algorithms for the search membership problem in H,
- the coset representaitve search problem in H,
- the cardinality search problem for $\operatorname{SI}(\operatorname{Sub}(C), H)$ in H
- the Membership Problem for $N_{H}^{*}(C)$ in H.

Regular Element Criterion

- If the Cardinality Search Problem in decidable in $S I(\operatorname{Sub}(C), H)$, then $E_{g, g^{\prime}}$ can be found effectively when given g and g^{\prime}.
- Criterion for determining if an element is regular in a HNN-extension $G=\left\langle H, t \mid t^{-1} A t=B\right\rangle$:
- H allows algorithms for the search membership problem in H,
- the coset representaitve search problem in H,
- the cardinality search problem for $\operatorname{SI}(\operatorname{Sub}(C), H)$ in H
- the Membership Problem for $N_{H}^{*}(C)$ in H.

Then, an algorithm exists which decides whether or not a given element in G is regular or not.

The CSP for regular elements in HNN-extensions

Theorem

Consider a group G, where G is an $H N N$-extension of a finitely presented group H. Say $G=\left\langle H, t \mid t^{-1} A t=B\right\rangle$. Let A and B be two finitely generated subgroups of G. Assume the group H allows algorithms for the Word Problem in H, the Search Membership Problem for A and B in H , the Coset Representative Search Problem for subgroups A and B in H, and the Cardinality Search Problem for $\operatorname{SI}(\operatorname{Sub}(C), H)$ in H. Then, the Conjugacy Search Problem is decidable in G for arbitrary pairs (g, u), where g has a cyclically reduced regular normal form of non-zero length and $u \in G$.

Miller's Group

Miller's groups are constructed via HNN-extensions. Let H be a finitely presented group given in terms of generators and relators as

$$
H=\left\langle s_{1}, \ldots, s_{n} \mid R_{1}, \ldots, R_{m}\right\rangle
$$

Miller's Group

Miller's groups are constructed via HNN-extensions. Let H be a finitely presented group given in terms of generators and relators as

$$
H=\left\langle s_{1}, \ldots, s_{n} \mid R_{1}, \ldots, R_{m}\right\rangle
$$

Miller's Group

Miller's groups are constructed via HNN-extensions. Let H be a finitely presented group given in terms of generators and relators as

$$
H=\left\langle s_{1}, \ldots, s_{n} \mid R_{1}, \ldots, R_{m}\right\rangle .
$$

The Miller Group of H, denoted $G(H)$, is constructed with generators

$$
q, s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{m}, d_{1}, \ldots, d_{n}
$$

and relators

$$
\begin{aligned}
t_{i}^{-1} q t_{i} & =q R_{i}, \\
t_{i}^{-1} s_{j} t_{i} & =s_{j}, \\
d_{j}^{-1} q d_{j} & =s_{j}^{-1} q s_{j}, \\
d_{k}^{-1} s_{j} d_{k} & =s_{j} .
\end{aligned}
$$

Miller's Group

- Miller's group is constructed as an HNN-extension so the authors can describe the regular form of its elements.

Miller's Group

- Miller's group is constructed as an HNN-extension so the authors can describe the regular form of its elements.
- There is a cubic time algorithm in the length of $|g|$ which finds the normal form of g, and a cubic time algorithm which finds the cyclically reduced normal form of g.

Miller's Group

- Miller's group is constructed as an HNN-extension so the authors can describe the regular form of its elements.
- There is a cubic time algorithm in the length of $|g|$ which finds the normal form of g, and a cubic time algorithm which finds the cyclically reduced normal form of g.
- However, the black hole of $G(H)$ is equal to $G(H)$.

Miller's Group

- Miller's group is constructed as an HNN-extension so the authors can describe the regular form of its elements.
- There is a cubic time algorithm in the length of $|g|$ which finds the normal form of g, and a cubic time algorithm which finds the cyclically reduced normal form of g.
- However, the black hole of $G(H)$ is equal to $G(H)$.
- This means no elements are regular!

Miller's Group: The Strong Black Hole

Miller's Group: The Strong Black Hole

- The conjugacy problem is still easy on most elements.

Miller's Group: The Strong Black Hole

- The conjugacy problem is still easy on most elements.
- The authors call these elements weakly regular, and the elements on which the CSP is hard strongly singular.

Miller's Group: The Strong Black Hole

- The conjugacy problem is still easy on most elements.
- The authors call these elements weakly regular, and the elements on which the CSP is hard strongly singular.
- Strongly singular elements lie in the strong black hole of $G(H), \mathbb{S B H}(G)$

Miller's Group: The Strong Black Hole

- The conjugacy problem is still easy on most elements.
- The authors call these elements weakly regular, and the elements on which the CSP is hard strongly singular.
- Strongly singular elements lie in the strong black hole of $G(H), \mathbb{S B H}(G)$
- The authors provide conjugacy criterion for weakly regular elements.

The CSP in Miller's Group

- If the word problem is undecidable in a finitely presented group H, then the conjugacy problem is undecidable in $G(H)$.

The CSP in Miller's Group

- If the word problem is undecidable in a finitely presented group H, then the conjugacy problem is undecidable in $G(H)$.
- The strong black hole of G is strongly negligible in G

The CSP in Miller's Group

- If the word problem is undecidable in a finitely presented group H, then the conjugacy problem is undecidable in $G(H)$.
- The strong black hole of G is strongly negligible in G
- The Conjugacy Search Problem is decidable in cubic time for all weakly regular elements in $G(H)$.

The CSP in Miller's Group

- If the word problem is undecidable in a finitely presented group H, then the conjugacy problem is undecidable in $G(H)$.
- The strong black hole of G is strongly negligible in G
- The Conjugacy Search Problem is decidable in cubic time for all weakly regular elements in $G(H)$.
- Thus, the generic-case complexity of the conjugacy search problem in $G(H)$ is easy, despite the fact that it is undecidable in general.

Proof Sketch: The SBH in $\mathrm{G}(\mathrm{H})$ is strongly negligible

- Define the sphere of radius k in a free group F to be $S_{k}=\{w \in F \| w \mid=k\}$. For a subset R of F, define the function f_{k} by

$$
f_{k}(R)=\frac{\left|R \cap S_{k}\right|}{\left|S_{k}\right|} .
$$

Proof Sketch: The SBH in $\mathrm{G}(\mathrm{H})$ is strongly negligible

- Define the sphere of radius k in a free group F to be $S_{k}=\{w \in F| | w \mid=k\}$. For a subset R of F, define the function f_{k} by

$$
f_{k}(R)=\frac{\left|R \cap S_{k}\right|}{\left|S_{k}\right|} .
$$

- The asymptotic density $\rho(R)$ is given by

$$
\rho(R)=\limsup _{k \rightarrow \infty} f_{k}(R)
$$

Proof Sketch: The SBH in $\mathrm{G}(\mathrm{H})$ is strongly negligible

- Define the sphere of radius k in a free group F to be $S_{k}=\{w \in F| | w \mid=k\}$. For a subset R of F, define the function f_{k} by

$$
f_{k}(R)=\frac{\left|R \cap S_{k}\right|}{\left|S_{k}\right|} .
$$

- The asymptotic density $\rho(R)$ is given by

$$
\rho(R)=\limsup _{k \rightarrow \infty} f_{k}(R)
$$

- Recall that R is called generic if $\rho(R)=1$ and negligible if the asymptotic density of its complement is 1 . If there is a positive constant $\delta<1$ such that $1-\delta^{k}<f_{k}(R)<1$ for all k greater than some constant K, then R is strongly generic. Similarly, R is strongly negligible if its complement is strongly generic.

Proof Sketch: The SBH in $\mathrm{G}(\mathrm{H})$ is strongly negligible

The authors prove that the strong black hole of G is strongly negligible:
Theorem
Let

$$
H=\left\langle s_{1}, \ldots, s_{n} \mid R_{1}, \ldots, R_{m}\right\rangle
$$

be a finitely presented group. Let $G(H)$ be the Miller's group of H. Let $m>1$. Then, $\operatorname{SBH}(G)$ is strongly negligible, and for $k>1$,

$$
f_{k}(\operatorname{SBB} \mathbb{H}(G))<\left(\frac{n+1}{n+m}\right)^{k-1}
$$

Proof Sketch: The SBH in $\mathrm{G}(\mathrm{H})$ is strongly negligible

Let G_{k}, B_{k}, and P_{k} denote the set of all elements with length k in $G, F(S, q)$, and $F(T, D)$. Because $I(g)=I(u)+I(f)$ where $g=u f$ such that $u \in F(T, D)$ and $f \in F(S, q)$, then $\left|G_{k}\right|=\left|P_{k}\right|+\left|P_{k-1}\right|\left|B_{1}\right|+\cdots+\left|B_{k}\right|$. Thus, for $m>1$,

$$
\begin{aligned}
f_{k}(\mathbb{S B H}(G)) & =\frac{\left|B_{k}\right|}{\left|G_{k}\right|} \\
& <\frac{\left|B_{k}\right|}{\left|P_{k}\right|} \\
& =\frac{(2 n+2)(2 n+1)^{k-1}}{(2 n+2 m)(2 n+2 m-1)^{k-1}} \\
& <\left(\frac{n+1}{n+m}\right)^{k-1}
\end{aligned}
$$

Baumslag's Group

- In Conjugacy in Baumslag's Group, Generic Case Complexity, and Division in Power Circuits, Diekert, Myasnikov, and Weiss study the conjugacy problem in:

Baumslag's Group

- In Conjugacy in Baumslag's Group, Generic Case Complexity, and Division in Power Circuits, Diekert, Myasnikov, and Weiss study the conjugacy problem in:
- the Baumslag-Solitar group $\mathbf{B S}_{1,2}$

Baumslag's Group

- In Conjugacy in Baumslag's Group, Generic Case Complexity, and Division in Power Circuits, Diekert, Myasnikov, and Weiss study the conjugacy problem in:
- the Baumslag-Solitar group $\mathbf{B S}_{1,2}$
- Baumslag's group $\mathbf{G}_{1,2}$, an HNN-extension of the Baumslag-Solitar group.

Baumslag's Group

- In Conjugacy in Baumslag's Group, Generic Case Complexity, and Division in Power Circuits, Diekert, Myasnikov, and Weiss study the conjugacy problem in:
- the Baumslag-Solitar group $\mathbf{B S}_{1,2}$
- Baumslag's group $\mathbf{G}_{1,2}$, an HNN-extension of the Baumslag-Solitar group.
- They show CSP is generically polynomial in Baumslag's group but the average-case complexity is non-elementary.

The Baumslag Group: Definition

- The Baumslag-Solitar group is given in terms of generators and relations by

$$
\left.\mathbf{B S}_{1,2}=\langle\mathbf{a}, t| \text { tat }^{-1}=a^{2}\right\rangle
$$

The Baumslag Group: Definition

- The Baumslag-Solitar group is given in terms of generators and relations by

$$
\mathbf{B S}_{1,2}=\left\langle a, t \mid t a t^{-1}=a^{2}\right\rangle .
$$

- The Baumslag group is given by

$$
\mathbf{G}_{1,2}=\left\langle a, b \mid b a b^{-1} a=a^{2} b a b^{-1}\right\rangle .
$$

Baumslag's Group: CSP

- The WSP and CSP have low complexity in $\mathbf{B S}_{1,2}$.

Baumslag's Group: CSP

- The WSP and CSP have low complexity in $\mathbf{B S}_{1,2}$.
- The WSP and CSP in $\mathbf{G}_{1,2}$ do not have low complexity.

Baumslag's Group: CSP

- The WSP and CSP have low complexity in $\mathbf{B S}_{1,2}$.
- The WSP and CSP in $\mathbf{G}_{1,2}$ do not have low complexity.
- The CSP in Baumslag's group is generically solvable in polynomial time.

Baumslag's Group

The authors rewrite Baumslag's group with a third generator:

Baumslag's Group

The authors rewrite Baumslag's group with a third generator:

$$
\mathbf{G}_{1,2}=\left\langle a, b, t \mid t a t^{-1}=a^{2}, b a b^{-1}=t\right\rangle .
$$

Baumslag's Group

The authors rewrite Baumslag's group with a third generator:

$$
\mathbf{G}_{1,2}=\left\langle a, b, t \mid t a t^{-1}=a^{2}, b a b^{-1}=t\right\rangle .
$$

They give the elements of this group as their β-factorizations, which is a word

$$
z=\gamma_{0} \beta_{1} \gamma_{1} \cdots \beta_{k} \gamma_{k}
$$

where $\beta_{i} \in\{b, \bar{b}\}$ and $\gamma_{i} \in\{a, \bar{a}, t, \bar{t}\}^{*}$, with the length of z given by $I(z)=k$.

Britton-reduced forms

- Words given in this form can be Britton-reduced, which means no Britton-reductions are possible.

Britton-reduced forms

- Words given in this form can be Britton-reduced, which means no Britton-reductions are possible.
- A word x is called cyclically Britton-reduced if $x x$ is Britton-reduced

Britton-reduced forms

- Words given in this form can be Britton-reduced, which means no Britton-reductions are possible.
- A word x is called cyclically Britton-reduced if $x x$ is Britton-reduced
- \hat{x} denotes a cyclically Britton-reduced form of x.

Britton Reductions Algorithm

Britton reductions are described in the following algorithm.
Algorithm 4 Britton Reductions

```
    for Some factor \(\beta \gamma \bar{\beta}\) with \(\gamma \in\{a, \bar{a}, t, \bar{t}\}^{*}\) do
        if \(\beta=b\) and \(\gamma=a^{\ell}\) in \(\mathbf{B S}_{1,2}\) for some \(\ell \in \mathbb{Z}\) then
                Replace \(b \gamma \bar{b}\) with \(t^{\ell}\)
        end if
        if \(\beta=\bar{b}\) and \(\gamma=t^{\ell}\) in \(\mathbf{B S}_{1,2}\) for some \(\ell \in \mathbb{Z}\) then
        Replace \(\bar{b} \gamma b\) with \(a^{\ell}\)
        end if
    end for
```


CSP in Baumslag's Group

- The word problem in $\mathbf{G}_{1,2}$ is decidable in cubic time.

CSP in Baumslag's Group

- The word problem in $\mathbf{G}_{1,2}$ is decidable in cubic time.
- Let $x, y \in\{a, \bar{a}, b, \bar{b}\}^{*}$. The authors show that for inputs x and y,

CSP in Baumslag's Group

- The word problem in $\mathbf{G}_{1,2}$ is decidable in cubic time.
- Let $x, y \in\{a, \bar{a}, b, \bar{b}\}^{*}$. The authors show that for inputs x and y,
- The CSP can be carried out in time $\mathcal{O}\left(n^{4}\right)$ whenever $\ell(\hat{x})>0$

CSP in Baumslag's Group

- The word problem in $\mathbf{G}_{1,2}$ is decidable in cubic time.
- Let $x, y \in\{a, \bar{a}, b, \bar{b}\}^{*}$. The authors show that for inputs x and y,
- The CSP can be carried out in time $\mathcal{O}\left(n^{4}\right)$ whenever $\ell(\hat{x})>0$
- Inputs such that $\ell(\hat{x})=0$ form a strongly negligible set.

Acknowledgements

Many thanks to my mentor, Professor Delaram Kahrobaei, as well as the rest of the second exam committee - Professors Xiangdong Li, Vladimir Shpilrain, Ben Fine, and Xiaowen Zhang.
I appreciate your time and your generous support.

References

[AAG99] I. Anshel, M. Anshel, and D. Goldfeld, An algebraic method for public-key cryptography, Mathematical Research Letters 6 (1999), 287-291.
[BMR07] A. Borovik, A. Myasnikov, and V. Remelennikov, Generic Complexity of the Conjugacy Problem in HNN-extensions and algorithmic stratification of Miller's Groups, Internat. J. Algebra Comput., Volume 17, Issue 5-6, p.963-997 (2007).
[D07] M. Dehn, On the topology of three-dimensional space, Papers on Group Theory and Topology, Springer-Verlag (1987) pp. 86-126. Originally published in German in 1907.

References

[DMW14] V, Diekert, A. Myasnikov, and A. Weiss, Conjugacy in Baumslag's Group, Generic Case Complexity, and Division in Power Circuits, LATIN 2014: Theoretical Informatics, Volume 8392 of the series Lecture Notes in Computer Science pp 1-12.
[DH76] Whitfield Diffie and Martin Hellman, New Directions in Cryptography, IEEE Transactions on Information Theory IT-22 (1976), no. 6, 644-654.

Proceeding of IEEE, Pages: 1-5 (2006)
[KK06] D. Kahrobaei and B. Khan A Non-Commutative Generalization of the ElGamal Key Exchange using Polycyclidistributionc Groups,

References

[KL15] Jonathan Katz and Yehuda Lindell, Introduction to Modern Cryptography, CRC Press, 2015.
[KL00] K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. S. Kang, and C. Park, New public-key cryptosystem using braid groups, Advances in cryptology CRYPTO 2000 (Santa Barbara, CA), Lecture Notes in Comp. Sc., vol. 1880 (2000), 166-183.
[MSU11] A. Myasnikov, V. Shpilrain, A. Ushakov, Non-commutative Cryptography and Complexity of Group-theoretic Problems, Mathematical Surveys and Monographs, Vol. 177, Providence, Rhode Island (2011).

References

[P94] C. H. Papadimitriou, Computational Complexity, Addison Wesley Longman, Reading, Massachusetts, 1995.
[S97] Peter W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM Journal on Computing, Volume 26 Issue 5, Oct. 1997, 1484-1509.
[S04] V. Shpilrain, Assessing security of some group based cryptosystems, 2003; arXiv:math/0311047.

[^0]: ${ }^{1}$ Papadimitriou, Computational Complexity, 1995.
 ${ }^{2}$ Myasnikov, Shpilrain, Ushakov,
 Non-commutative Cryptography and Complexity of Group-theoretic Problems.

[^1]: ${ }^{1}$ Papadimitriou, Computational Complexity, 1995.
 ${ }^{2}$ Myasnikov, Shpilrain, Ushakov,
 Non-commutative Cryptography and Complexity of Group-theoretic Problems.

[^2]: ${ }^{1}$ Papadimitriou, Computational Complexity, 1995.
 ${ }^{2}$ Myasnikov, Shpilrain, Ushakov,
 Non-commutative Cryptography and Complexity of Group-theoretic Problems.

[^3]: ${ }^{1}$ Papadimitriou, Computational Complexity, 1995.
 ${ }^{2}$ Myasnikov, Shpilrain, Ushakov,
 Non-commutative Cryptography and Complexity of Group-theoretic Problems.

[^4]: ${ }^{3} \mathbf{M}$. Dehn, On the topology of three-dimensional space, 1907.

[^5]: ${ }^{4}$ Whitfield Diffie and Martin Hellman, New Directions in Cryptography.

[^6]: ${ }^{4}$ Whitfield Diffie and Martin Hellman, New Directions in Cryptography.

[^7]: ${ }^{4}$ Whitfield Diffie and Martin Hellman, New Directions in Cryptography.

[^8]: ${ }^{4}$ Whitfield Diffie and Martin Hellman, New Directions in Cryptography.

[^9]: ${ }^{4}$ Whitfield Diffie and Martin Hellman, New Directions in Cryptography.

[^10]: ${ }^{5}$ Peter Shor, Polynomial-Time Algorithms for Prime Factorization, and Discrete Logarithms on a Quantum Computer.

[^11]: ${ }^{5}$ Peter Shor, Polynomial-Time Algorithms for Prime Factorization, and Discrete Logarithms on a Quantum Computer.

[^12]: ${ }^{5}$ Peter Shor, Polynomial-Time Algorithms for Prime Factorization, and Discrete Logarithms on a Quantum Computer.

[^13]: ${ }^{6}$ I. Anshel, M. Anshel, and D. Goldfeld, An algebraic method for public-key cryptography.
 ${ }^{7}$ Ko, Lee, et. al., New public-key cryptosystem using braid groups.
 ${ }^{8}$ Kahrobaei, Khan, A non-commutative generalization of EIGamal Key Exchange.

[^14]: ${ }^{6}$ I. Anshel, M. Anshel, and D. Goldfeld, An algebraic method for public-key cryptography.
 ${ }^{7}$ Ko, Lee, et. al., New public-key cryptosystem using braid groups.
 ${ }^{8}$ Kahrobaei, Khan, A non-commutative generalization of EIGamal Key Exchange.

[^15]: ${ }^{6}$ I. Anshel, M. Anshel, and D. Goldfeld, An algebraic method for public-key cryptography.
 ${ }^{7}$ Ko, Lee, et. al., New public-key cryptosystem using braid groups.
 ${ }^{8}$ Kahrobaei, Khan, A non-commutative generalization of EIGamal Key Exchange.

[^16]: ${ }^{6}$ I. Anshel, M. Anshel, and D. Goldfeld, An algebraic method for public-key cryptography.
 ${ }^{7}$ Ko, Lee, et. al., New public-key cryptosystem using braid groups.
 ${ }^{8}$ Kahrobaei, Khan, A non-commutative generalization of EIGamal Key Exchange.

[^17]: ${ }^{6}$ I. AnsheI, M. Anshel, and D. Goldfeld, An algebraic method for public-key cryptography.
 ${ }^{7}$ Ko, Lee, et. al., New public-key cryptosystem using braid groups.
 ${ }^{8}$ Kahrobaei, Khan, A non-commutative generalization of EIGamal Key Exchange.

[^18]: ${ }^{9}$ V. Shpilrain, A. Ushakov,
 The Conjugacy Search Problem in Public Key Cryptography: Unnecessary and Insufficient.

[^19]: ${ }^{9}$ V. Shpilrain, A. Ushakov,
 The Conjugacy Search Problem in Public Key Cryptography: Unnecessary and Insufficient.

[^20]: ${ }^{9}$ V. Shpilrain, A. Ushakov,
 The Conjugacy Search Problem in Public Key Cryptography: Unnecessary and Insufficient.

[^21]: ${ }^{9}$ V. Shpilrain, A. Ushakov,
 The Conjugacy Search Problem in Public Key Cryptography: Unnecessary and Insufficient.

[^22]: ${ }^{10}$ Shpilrain, Assessing security of some group based cryptosystems.

[^23]: ${ }^{10}$ Shpilrain, Assessing security of some group based cryptosystems.

[^24]: ${ }^{10}$ Shpilrain, Assessing security of some group based cryptosystems.

[^25]: ${ }^{10}$ Shpilrain, Assessing security of some group based cryptosystems.

[^26]: ${ }^{10}$ Shpilrain, Assessing security of some group based cryptosystems.

[^27]: ${ }^{11}$ C.F. Miller III, Decision problems for groups.
 ${ }^{12}$ Shpilrain, Assessing security of some group based cryptosystems.

[^28]: ${ }^{11}$ C.F. Miller III, Decision problems for groups.
 ${ }^{12}$ Shpilrain, Assessing security of some group based cryptosystems.

[^29]: ${ }^{11}$ C.F. Miller III, Decision problems for groups.
 ${ }^{12}$ Shpilrain, Assessing security of some group based cryptosystems.

[^30]: ${ }^{13}$ Borovik, Myasnikov, Remeslennikov, Generic complexity of the conjugacy problem in HNN-extensions and algorithmic stratification of Miller's groups.

[^31]: ${ }^{13}$ Borovik, Myasnikov, Remeslennikov,
 Generic complexity of the conjugacy problem in HNN-extensions and algorithmic stratification of Miller's groups.

[^32]: ${ }^{13}$ Borovik, Myasnikov, Remeslennikov,
 Generic complexity of the conjugacy problem in HNN-extensions and algorithmic stratification of Miller's groups.

