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Broad Overview

Today, we will discuss the use of generic-case complexity of
algorithmic problems in groups to determine platform
groups for use in non-commutative cryptosystems.
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Broad Overview

• Algorithmic problems
• Worst-case and average-case complexity
• Generic-case complexity
• Non-commutative cryptography
• Platform groups for non-commutative cryptosystems
• Previous results on generic-case complexity and the

conjugacy search problem in:
• HNN-extensions and Miller’s groups
• Baumslag’s groups
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Computational Problems

• Core topic in computer science for over a century
• Take an input, perform some number of steps, produce an

output
• Decision problems ask us a “yes" or “no" question
• Search problems asks us to find a specific value12

1Papadimitriou, Computational Complexity, 1995.
2Myasnikov, Shpilrain, Ushakov,

Non-commutative Cryptography and Complexity of Group-theoretic Problems.
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Computational Problems: The Setup

• X a finite alphabet

• X ∗ all words in X
• Subsets of X ∗ are languages in X
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Decision Problems

• X a finite alphabet
• X ∗ all words in X
• Subsets of X ∗ are languages in X

A decision problem D = (L,U) for a language L ⊆ U ⊆ X ∗ asks
whether there is an algorithm A for a word w ∈ U which
determines whether w ∈ L.

6 / 86



Complexity Generic-Case Complexity Non-Commutative Crypto HNN-Extensions Baumslag’s Group

Decision Problems

• X a finite alphabet
• X ∗ all words in X
• Subsets of X ∗ are languages in X

A decision problem D = (L,U) for a language L ⊆ U ⊆ X ∗ asks
whether there is an algorithm A for a word w ∈ U which
determines whether w ∈ L.

6 / 86



Complexity Generic-Case Complexity Non-Commutative Crypto HNN-Extensions Baumslag’s Group

Search Problems

• X a finite alphabet
• X ∗ all words in X
• Subsets of X ∗ are languages in X

A search problem D for finite alphabets X and Y and a
predicate R(x , y) ⊆ X ∗ × Y ∗ asks to find y ∈ Y ∗ such that
R(x , y) holds, given x ∈ X ∗.
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Algorithmic Problems in Groups

• Some classical problems were introduced by Max Dehn in
the early 1900’s3.

• The conjugacy problem
• The word problem

3M. Dehn, On the topology of three-dimensional space, 1907.
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The Word Problem

Word Decision Problem (WDP): Consider a finitely generated
group G = 〈X |R〉. Given a word w in the generators of G,
determine whether w =G 1.

Word Search Problem (WSP): Consider a finitely generated
group G = 〈X |R〉. Let w be a word in the generators of G such
that w =G 1. Find a representation of w as a product of
conjugates of relators from R.
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The Conjugacy Problem

Conjugacy Decision Problem (CDP): Let G be a finitely
generated group and let x , y ∈ G. Determine whether x and y
are conjugate in G.

Conjugacy Search Problem (CSP): Let G be a finitely
generated group and let x , y ∈ G such that x and y are
conjugate. Find a conjugator. In other words, find an element
a ∈ G such that x = a−1ya.
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Complexity

• Complexity class of an algorithm is a method of describing
the resources needed by that algorithm

• Time
• Space

• Need to know: model of computation, mode of
computation, resources to be controlled, bound on
controlled resource
• Model: Multi-tape Turing machine
• Mode: Deterministic
• Bound: Non-decreasing function f : R≥0 → R≥0

• For f , there must be a multi-tape Turing machine Mf such
that for any input x with size n, M computes a string 0f (|x|)

in time TM(x) = O(n + f (n))
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Worst-Case Complexity Classes

• TIME(f (n)) is the set of languages which can be decided
by a multi-tape Turing machine within the time bound f (n).

• NTIME(f (n)) is the set of languages which can be decided
by nondeterministic Turing machines within the time bound
f (n).

• P is the set of all languages which can be decided in
polynomial time by multi-tape Turing machines. More
precisely,

P =
⋃
k∈N

TIME(nk ).

• NP is the set of all languages which can be decided in
polynomial time by nondeterministic Turing machines, i.e.,

NP =
⋃
k∈N

NTIME(nk ).
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Deficiencies of Worst-Case Complexity

• Algorithm can be have very differently on average than it
does in the worst case

• Example: Hamiltonian Circuit problem is NP-complete but
linear on average.

• Average-Case Complexity takes into account the behavior
of an algorithm on all inputs rather than just the “worst" by
looking at the input distribution
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Distributional Computational Problems

Definition (Probability Measure)
Let (I,M) be a measurable space. A probability measure on I
is a map µ :M→ [0,∞) satisfying:

(i) µ(∅) = 0
(ii) µ(I) = 1
(iii) If {In} is a collection of pairwise disjoint measurable sets,

then

µ

( ∞⋃
n=1

In

)
=
∞∑

n=1

µ(In).

If I is discrete (enumerable), then probability distributions µ are
called atomic. ie, For a subset S ⊆ I,

µ(S) =
∑
x∈S

µ(x)
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Distributional Computational Problems

Definition
A distributional computational problem is a pair (D, µ) where
D = (L, I) is a computational problem and µ is a probability
measure on I.
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Average-Case Complexity

Let I be a discrete set with size function s : I → N and atomic
probability measure µ.

Definition (Linear and polynomial on µ-average functions )
A function f : I → R+ is called linear on µ-average if∫

I
f (w)s(w)−1µ(w) <∞.

A function f is called polynomial on µ-average if f ≤ p(`) for
some polynomial p and some linear on µ-average function `.
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Average-Case Complexity (Cont.)

Average behavior of functions can be described not just as
linear or polynomial but with also respect to a more general
function.

Definition (t on µ-average function)
Let f : I → R and t : R→ R be two functions. Then f is t on
µ-average if f (w) = t(`(x)) for some linear on µ-average
function `.
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Average-Case Complexity (Cont.)

The average behavior of functions can be used to define
average behavior of algorithms. Let D be a stratified
distributional algorithmic problem. Now, we let I denote the set
of instances of D.

Definition (Time upper bound on µ-average)
Let A be an algorithm. If the time function TA : I → N has an
upper bound which is t on µ-average, then we say that the
algorithm has time upper bound t(x) on µ-average. In
particular, if TA is polynomial on µ-average then A has
polynomial time on µ-average.
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Average-Case Complexity Classes

We can now define the following average-case complexity
classes:

• AveP is the class of stratified distributional problems for
which there exists a polynomial time on µ-average decision
algorithm.

• AveTime(t) is the class of stratified distributional problems
for which, given time bound t , there exists a decision
algorithm with time upper bound t on µ-average.
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Deficiencies of Average-Case Complexity

• Sometimes an algorithm computes relatively quickly on
most inputs with bad behavior on only a small number of
inputs

• Despite computing quickly on most inputs, this bad
behavior can cause high worst and average case
complexities for the algorithm.

• Can only consider decidable problems
• Algorithm must terminate on all inputs
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Generic-Case Complexity: Idea

Generic-case complexity was first introduced in Generic-case
complexity, decision problems in group theory, and random
walks by Kapovich, Myasnikov, Schupp, and Shpilrain.

• Computes the behavior of algorithms on “most" inputs
• Can consider undecidable problems
• It is easier to find a fast generic algorithm than it is to find

an algorithm which is fast on average

21 / 86



Complexity Generic-Case Complexity Non-Commutative Crypto HNN-Extensions Baumslag’s Group

Generic-Case Complexity: Idea

Generic-case complexity was first introduced in Generic-case
complexity, decision problems in group theory, and random
walks by Kapovich, Myasnikov, Schupp, and Shpilrain.

• Computes the behavior of algorithms on “most" inputs

• Can consider undecidable problems
• It is easier to find a fast generic algorithm than it is to find

an algorithm which is fast on average

21 / 86



Complexity Generic-Case Complexity Non-Commutative Crypto HNN-Extensions Baumslag’s Group

Generic-Case Complexity: Idea

Generic-case complexity was first introduced in Generic-case
complexity, decision problems in group theory, and random
walks by Kapovich, Myasnikov, Schupp, and Shpilrain.

• Computes the behavior of algorithms on “most" inputs
• Can consider undecidable problems

• It is easier to find a fast generic algorithm than it is to find
an algorithm which is fast on average

21 / 86



Complexity Generic-Case Complexity Non-Commutative Crypto HNN-Extensions Baumslag’s Group

Generic-Case Complexity: Idea

Generic-case complexity was first introduced in Generic-case
complexity, decision problems in group theory, and random
walks by Kapovich, Myasnikov, Schupp, and Shpilrain.

• Computes the behavior of algorithms on “most" inputs
• Can consider undecidable problems
• It is easier to find a fast generic algorithm than it is to find

an algorithm which is fast on average

21 / 86



Complexity Generic-Case Complexity Non-Commutative Crypto HNN-Extensions Baumslag’s Group

Generic-Case Complexity, First Definition

• Let X be a finite alphabet, X ∗ the set of finite words over X
• Let ν be a probability distribution on X ∗

• We say that a subset T ⊂ X ∗ is generic with respect to ν if
ν (X ∗ \ T ) = 0.

• If an algorithm A runs in polynomial time on all of the
inputs from some subset T of X ∗ which is generic with
respect to ν, then A is said to have polynomial-time
generic case complexity with respect to ν.
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GCC, First Definition - Asymptotic Density

Method of measuring our sets.

Definition (Asymptotic density, finite alphabet version)
Let X be a finite alphabet containing at least two elements and
let (X ∗)k be the set of k-tuples of words on X. Define the length
of any k-tuple of words (w1, . . . ,wk ) to be the sum

∑k
i=1 wi , and

let Bn denote the set of all k-tuples in (X ∗)k of length less than
or equal to n, n ≥ 0.
For a subset S ⊆ (X ∗)k define the asymptotic density ρ(S) by

ρ(S) := lim sup
n→∞

ρn(S)

where
ρn(S) :=

|S ∩ Bn|
|Bn|

.

When the limit limn→∞ ρ(S) exists, we let ρ̂(S) denote ρ(S).

23 / 86



Complexity Generic-Case Complexity Non-Commutative Crypto HNN-Extensions Baumslag’s Group

GCC, First Definition - Asymptotic Density

Method of measuring our sets.

Definition (Asymptotic density, finite alphabet version)
Let X be a finite alphabet containing at least two elements and
let (X ∗)k be the set of k-tuples of words on X. Define the length
of any k-tuple of words (w1, . . . ,wk ) to be the sum

∑k
i=1 wi , and

let Bn denote the set of all k-tuples in (X ∗)k of length less than
or equal to n, n ≥ 0.
For a subset S ⊆ (X ∗)k define the asymptotic density ρ(S) by

ρ(S) := lim sup
n→∞

ρn(S)

where
ρn(S) :=

|S ∩ Bn|
|Bn|

.

When the limit limn→∞ ρ(S) exists, we let ρ̂(S) denote ρ(S).
23 / 86



Complexity Generic-Case Complexity Non-Commutative Crypto HNN-Extensions Baumslag’s Group

GCC, First Definition

Definition (Generic sets, finite alphabet version)
A subset S ⊆ (X ∗)k is a generic set if ρ̂(S) = 1. If ρn(S)
converges to 1 exponentially fast then S is said to be strongly
generic.
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GCC, First Definition - Generic Performance of
Algorithm

Definition (Generic and strong generic performance of a
partial algorithm)
Consider a decision problem D ⊆ (X ∗)k with complexity class
C, and let A be a correct partial algorithm for D. (In other
words, if A reaches a decision then that decision is correct.)
Say that A solves D with generic-case complexity C if there is a
generic subset S ⊆ (X ∗)k such that for every τ ∈ S, A
terminates on τ in complexity bound C. Furthermore, when S is
strongly generic then A solves the problem D with generic case
complexity strongly in C.
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Generic-Case Complexity, Another Definition

The next definition is similar to the previous one, but does not
use asymptotic density.

26 / 86



Complexity Generic-Case Complexity Non-Commutative Crypto HNN-Extensions Baumslag’s Group

Generic-Case Complexity: Pseudomeasures

• In Non-Commutative Cryptography and Complexity of
Group-theoretic Problems by Myasnikov, Shpilrain, and
Ushakov, generic-case complexity is also defined in terms
of generic sets

• Generic sets are here defined via the concept of
pseudomeasures which “measure" the sets
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Generic-Case Complexity: Pseudomeasures

Definition (Pseudomeasure)
A pseudo-measure µ on I is a function µ : S → R+ defined on a
subset S ⊂ P(I) which satisfies:

1) S contains I and is closed under disjoint union and
complementation;

2) µ(I) = 1, and
3) for any disjoint subset A,B ∈ S, µ(A ∪ B) = µ(A) + µ(B).
More specifically, we say that a pseudo-measure µ is atomic if
µ(Q) is defined for any finite subset Q ⊆ I.
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Generic-Case Complexity: Pseudomeasures

Definition (Generic set, pseudomeasure version)
Let µ be a pseudomeasure on a set I. A subset Q ⊆ I is called
generic if µ(Q) = 1 and is called negligible if µ(Q) = 0.
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GCC, First Definition - Asymptotic Density

A psuedomeasure is given by asymptotic density.

Definition (Asymptotic density, finite alphabet version)
Let X be a finite alphabet containing at least two elements and
let (X ∗)k be the set of k-tuples of words on X. Define the length
of any k-tuple of words (w1, . . . ,wk ) to be the sum

∑k
i=1 wi , and

let Bn denote the set of all k-tuples in (X ∗)k of length less than
or equal to n, n ≥ 0.
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where
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.

When the limit limn→∞ ρ(S) exists, we let ρ̂(S) denote ρ(S).

30 / 86



Complexity Generic-Case Complexity Non-Commutative Crypto HNN-Extensions Baumslag’s Group

GCC, First Definition - Asymptotic Density

A psuedomeasure is given by asymptotic density.

Definition (Asymptotic density, finite alphabet version)
Let X be a finite alphabet containing at least two elements and
let (X ∗)k be the set of k-tuples of words on X. Define the length
of any k-tuple of words (w1, . . . ,wk ) to be the sum

∑k
i=1 wi , and

let Bn denote the set of all k-tuples in (X ∗)k of length less than
or equal to n, n ≥ 0.
For a subset S ⊆ (X ∗)k define the asymptotic density ρ(S) by

ρ(S) := lim sup
n→∞

ρn(S)

where
ρn(S) :=

|S ∩ Bn|
|Bn|

.

When the limit limn→∞ ρ(S) exists, we let ρ̂(S) denote ρ(S).
30 / 86



Complexity Generic-Case Complexity Non-Commutative Crypto HNN-Extensions Baumslag’s Group

Generic-Case Complexity: Pseudomeasures

Definition (Generic performance of an algorithm,
pseudomeasure version)
Let D be a distributional computational problem. A partial
decision algorithm A for D generically solves the problem D if
the halting set HA of A is generic in I = ID with respect to the
given probability distribution µ = µD on I. In this case we say
that D is generically decidable.
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Generic-Case Complexity: Pseudomeasures -
Generic Upper Bound

Let s : I → N a size function on the set of inputs I = ID.

Definition (Generic upper bound)
A time function f (n) is a generic upper bound for A if the set

HA,f = {w ∈ I : TA(w) ≤ f (s(w))}

is generic in I with respect to the spherical asymptotic density
ρµ.
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Generic-Case Complexity: A Probablistic Definition

• Kapovich provided a briefer definition of generic-case
complexity in Musings on Generic-Case Complexity which
approaches the concept from a probablistic point of view

• Previous definitions of generic-case complexity have
required first a definition of a generic set - Kapovich’s
definition does not.

• His definition does not require size functions.
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Generic-Case Complexity: A Probablistic Definition

• Instead of considering generic subsets, Kapovich looks at
the probability that certain events occur.

• Look at the probability that an input generated by a random
process terminates in time O(f (n)).
• A random process is a collection {W (i) : i ∈ I} of random

variables for some index set I. When I is discrete, we say
that this is a discrete random process and can denote the
process by

W1,W2, . . . ,Wn, . . . .
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Generic-Case Complexity: A Probablistic Definition

Shpilrain’s idea for the following definition is to replace the
concept of a size function which measures inputs of size n with
a random process that generates an input for the algorithm in n
steps.
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Generic-Case Complexity: A Probablistic Definition

Definition (Generic performance of an algorithm with
respect to a random process)
Let Ω be the set of inputs for a partial decision algorithm A with
values in a set U. Consider a discrete random time process
W = W1,W2, . . . ,Wn, . . . which generates an input Wn ∈ Ω
after n steps and let f be a function such that f (n) ≥ 0. Say that
A has generic-case complexity less than or equal to f with
respect toW if

lim
n→∞

Pr [tA(Wn) ≤ f (n)] = 1,

where tA(Wn) denotes the time it takes for the algorithm A to
compute on input Wn. If this limit converges exponentially fast,
say that U has strong generic-case time complexity ≤ f with
respect toW.
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Analysis of Generic-Case Complexity

When analyzing problems, it is important to choose the way in
which we formulate the question corresponds to the definition
of generic-case complexity we are using.
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Analysis of Generic-Case Complexity

The original definition for generic sets is given in terms of the
asymptotic density of subsets of words from some finite
alphabet.

• Computing the asymptotic density function requires
defining a length function

• It also requires that we are able to perform computations
with Bn, sets of k -tuples of words with length at most n.

• Ultimately, we must choose the length function such that
these computations have meaning, and the choice of
length function is not always obvious.
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Analysis of Generic-Case Complexity

• Some problems persist the second definition of generic
sets described:

• In order to define generic sets we still are required to pick a
way of measuring subsets (in this case pseudomeasure)

• The choice of pseudomeasure is still not always obvious or
natural
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Analysis of Generic-Case Complexity

• The probablistic definition has its own deficiencies and
advantages:
• A deficiency: Assumes that the elements generated at each

step n in the chosen random process are valid inputs for the
algorithm

• An advantage: does not require that we define any sort of
size function, and instead just uses the time used by a
random process to generate elements as their “size."
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Commutative Cryptography

• Whitfield Diffie and Martin Hellman revolutionized the field
of cryptography by laying the groundwork for secure key
exchange in their groundbreaking 1976 paper.4

• Diffie and Hellman introduced public key (or asymmetric)
cryptography, where two or more parties may exchange
information by communicating entirely over a public
channel

• Asymmetric encryption schemes: Diffie Hellman, ElGamal,
and Cramer-Shoup
• Use commutative groups, rely on the hardness of the

discrete logarithm problem.

4Whitfield Diffie and Martin Hellman, New Directions in Cryptography.
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Discrete Log Problem

Discrete Log Problem: Let G be a cyclic group and let g ∈ G be
a generator of G. The discrete logarithm problem in G is to
compute logg h for an element h ∈ G.

• The discrete log problem is used in many cryptosystems
today because it is believed to be hard for many groups G
(e.g., cyclic groups of prime order)

• Peter Shor presented an algorithm in 1994 that is able to
solve the discrete logarithm in polynomial time on a
quantum computer.5

5Peter Shor, Polynomial-Time Algorithms for Prime Factorization,
and Discrete Logarithms on a Quantum Computer.
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Non-Commutative Cryptography

• Recently, cryptosystems have been proposed which
instead use non-commutative groups.

• Anshel-Anshel-Goldfeld Key Exchange6

• Non-Commutative Diffie-Hellman7

• Non-Commutative ElGamal8

• The structure of these non-commutative groups causes
these cryptosystems to rely on other problems for security,
such as the difficulty of the conjugacy search problem.

6I. Anshel, M. Anshel, and D. Goldfeld, An algebraic method for public-key cryptography.
7Ko, Lee, et. al., New public-key cryptosystem using braid groups.
8Kahrobaei, Khan, A non-commutative generalization of ElGamal Key Exchange.
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Anshel-Anshel-Goldfeld

This protocol uses the difficulty of the word problem in some
non-commutative groups as its foundation.
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Anshel-Anshel-Goldfeld

Public Information: A tuple (G, β, γ1, γ2), where G is a group
and β, γ1, γ2 : G ×G→ G are the functions

β(u, v) = u−1vu (conjugation)

γ1(u, v) = u−1v

γ2(u, v) = v−1u

Observe that these functions satisfy the following three
conditions:
1. β(u, v1 · v2) = β(u, v1) · β(u, v2) for all u, v1, v2 ∈ G.
2. γ1(u, β(v ,u)) = γ2(v , β(u, v)) for all u, v ∈ G.
3. If x ∈ G is private, it is infeasable to determine x given

vi ∈ G and β(x , vi) for 1 ≤ i ≤ k .
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Anshel-Anshel-Goldfeld

The Protocol:

1. Two users A and B are each publicly assigned a subgroup of
G,

SA = 〈s1, s2, . . . , sm〉,
SB = 〈t1, t2, . . . , tn〉,

respectively.
2. A selects a ∈ SA and B selects b ∈ SB. These are the users’

secret keys.
3. A computes and transmits β(a, ti) for 1 ≤ i ≤ n, while user B

computes and transmits β(b, si) for 1 ≤ i ≤ m.
4. A computes γ1(a, β(b,a)), B computes γ2(b, β(a,b)). The

key κ is:

κ = γ1(a, β(b,a)) = γ2(b, β(a,b)) = a−1b−1ab.
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AAG and the CSP

• Solving the simultaneous conjugacy search problem for
a−1tia and b−1sjb for 1 ≤ i ≤ n and 1 ≤ j ≤ m would yield
a and b, from which the secret key could be derived.

• However, the conjugacy search problem in G does not
necessarily give us a and b as words in A and B,
respectively9

• Thus the authors explain we must also solve the
membership search problem, which states that given a and
s1, . . . , sm, we must find an expression of a as a word in
s1, . . . , sm. They claim that this problem is hard in many
groups.

9V. Shpilrain, A. Ushakov,
The Conjugacy Search Problem in Public Key Cryptography: Unnecessary and Insufficient.

47 / 86



Complexity Generic-Case Complexity Non-Commutative Crypto HNN-Extensions Baumslag’s Group

AAG and the CSP

• Solving the simultaneous conjugacy search problem for
a−1tia and b−1sjb for 1 ≤ i ≤ n and 1 ≤ j ≤ m would yield
a and b, from which the secret key could be derived.

• However, the conjugacy search problem in G does not
necessarily give us a and b as words in A and B,
respectively9

• Thus the authors explain we must also solve the
membership search problem, which states that given a and
s1, . . . , sm, we must find an expression of a as a word in
s1, . . . , sm. They claim that this problem is hard in many
groups.

9V. Shpilrain, A. Ushakov,
The Conjugacy Search Problem in Public Key Cryptography: Unnecessary and Insufficient.

47 / 86



Complexity Generic-Case Complexity Non-Commutative Crypto HNN-Extensions Baumslag’s Group

AAG and the CSP

• Solving the simultaneous conjugacy search problem for
a−1tia and b−1sjb for 1 ≤ i ≤ n and 1 ≤ j ≤ m would yield
a and b, from which the secret key could be derived.

• However, the conjugacy search problem in G does not
necessarily give us a and b as words in A and B,
respectively9

• Thus the authors explain we must also solve the
membership search problem, which states that given a and
s1, . . . , sm, we must find an expression of a as a word in
s1, . . . , sm. They claim that this problem is hard in many
groups.

9V. Shpilrain, A. Ushakov,
The Conjugacy Search Problem in Public Key Cryptography: Unnecessary and Insufficient.

47 / 86



Complexity Generic-Case Complexity Non-Commutative Crypto HNN-Extensions Baumslag’s Group

AAG and the CSP

• Solving the simultaneous conjugacy search problem for
a−1tia and b−1sjb for 1 ≤ i ≤ n and 1 ≤ j ≤ m would yield
a and b, from which the secret key could be derived.

• However, the conjugacy search problem in G does not
necessarily give us a and b as words in A and B,
respectively9

• Thus the authors explain we must also solve the
membership search problem, which states that given a and
s1, . . . , sm, we must find an expression of a as a word in
s1, . . . , sm. They claim that this problem is hard in many
groups.

9V. Shpilrain, A. Ushakov,
The Conjugacy Search Problem in Public Key Cryptography: Unnecessary and Insufficient.

47 / 86



Complexity Generic-Case Complexity Non-Commutative Crypto HNN-Extensions Baumslag’s Group

AAG and the CSP

Despite this, we would not wish for a platform group for the
cryptosystem to have a fast solution for the conjugacy search
problem, because it would provide an adversary with a simple
attack, even if the attack might not work in every instance.
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Platform Groups

It is necessary to find groups which are secure enough to serve
as platforms for non-commutative cryptosystems. Shpilrain
provided a collection of properties which a platform group
should satisfy:10

(P1) We must have previous results regarding the conjugacy
search problem in the group.

(P2) In order to have efficient key extraction within the protocol,
the word problem should have a “fast" solution by a
deterministic algorithm.

(P3) For security, the CSP should not have a “fast"
(subexponential) algorithm by a deterministic algorithm.

(P4) We should not be able to recover x from x−1ax .

10Shpilrain, Assessing security of some group based cryptosystems.
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Previous results

This provides motivation for studying the generic-case
complexity of the conjugacy search problem in various
non-commutative groups.
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HNN-Extensions and Miller’s Groups

• Miller constructed groups for which the word problem is
decidable but the conjugacy problem is undecidable in
1992.11

• These properties appear promising for a platform group
candidate (In fact, Shpilrain suggested these groups for
further consideration in 200412).

• However (as Shpilrain pointed out), the conjugacy problem
is undecidable generally, but no results yet existed on its
difficulty generically.

11C.F. Miller III, Decision problems for groups.
12Shpilrain, Assessing security of some group based cryptosystems.
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HNN-Extensions and Miller’s Groups

In 2007, Borovik, Myasnikov, and Remeslennikov addressed
this question.13 They show that:

• The conjugacy search problem amalgamated free products
and HNN-extensions of groups is generically easy even
though it can be undecidable generally

• The CSP in Miller’s group is easy on most inputs, even
though it is undecidable generally.

13Borovik, Myasnikov, Remeslennikov,
Generic complexity of the conjugacy problem in HNN-extensions and algorithmic stratification of Miller’s groups.
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HNN-extensions: Definition

• Let H = 〈X |R〉 be a group
• Let A = 〈Ui |i ∈ I〉 and B = 〈Vi |i ∈ I〉 be isomorphic

subgroups of H.
• Let φ : A→ B be an isomorphism given by Ui 7→ Vi for all i .
• The HNN-extension of the base group H with the stable

letter t and associated subgroups A and B is given by

G = 〈X , t |R, t−1Ui t = Vi , i ∈ I〉.

The authors also note that G can be written also as
〈H, t |t−1At = B, φ〉.
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Reduced Forms

The reduced form of elements in G:

• Every g ∈ G can be written

g = w0tε1w1 · · · tεnwn

where εi = ±1 for all i and wi is a word in X .
• This word is called reduced if it contains no subwords of

the form t−1wi t for wi ∈ A or twi t−1 for wi ∈ B
• Subwords of the above form are called pinches
• The length of the word is the number of occurrences of ti in

a reduced form of a word.
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Cyclically Reduced Forms

The reduced word

g = htε1s1 · · · tεnsn

is called cyclically reduced if either:

• If n = 0, then h ∈ A ∪ B or h is not conjugate in G to any
element of A ∪ B, or

• If n > 0, then either:
• ε1 = εn
• If ε1 = −1, then snh 6∈ A
• if ε1 = 1, then snh 6∈ B.
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• If n > 0, then either:

• ε1 = εn
• If ε1 = −1, then snh 6∈ A
• if ε1 = 1, then snh 6∈ B.
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Unique Normal Forms

Let SA and SB be systems of right coset representatives of A
and B in H. The normal form of an element g is a reduced form

g = h0tε1h1 · · · tεnhn

satisfying all of following:

• h0 ∈ H
• If εi = −1 then hi ∈ SA

• If εi = 1 then hi ∈ SB.
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Algorithm: Reduced Forms

Input: Words of the form g = w0tε1w1 · · · tεnwn.

Algorithm 1 Reduced forms in HNN-extensions

1: while The word g contains a pinch tεi wi tεi+1 do
2: if wi ∈ A and εi = −1 then
3: Rewrite wi in the generators Uj , j ∈ I, for A.
4: Replace t−1wi t with φ(wi) using substitution

t−1Uj t → Vj .
5: else if wi ∈ B and εi = 1 then
6: Rewrite wi in the generators Vj , j ∈ I, for B.
7: Replace twi t−1 with φ−1(wi) using substitution

tVj t−1 → Uj .
8: end if
9: end while
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Algorithm: Reduced Forms

This algorithm halts in a finite number of steps with correct
output whenever the Membership Search Problem is decidable
for subgroups A and B.
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Algorithm: Normal Forms

Input: any word g in the standard generators of G.
Let SA and SB be recursive sets of representatives of A and B
in H.

Algorithm 2 Normal forms in HNN-extensions

1: while g ∈ G is not in normal form do
2: Replace t−1h with φ(c)t−1s, where h = cs, c ∈ A, and

s ∈ SA.
3: Replace th with φ−1(c)ts, where h = cs, c ∈ B, and

s ∈ SB.
4: Replace tεt−ε with 1.
5: end while
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Algorithm: Normal Forms

The Coset Representative Search Problem asks us to find two
algorithms for which, for a word w ∈ F (X ), we find a
representative for Aw in SA and Bw in SB.

• This algorithm uses the Coset Representative Search
Problem: for a word w ∈ F (X ), find a representative for Aw
in SA and Bw in SB

• Uses the Membership Search Problem, because if sw is
the representative of Aw in SA, then ws−1

w ∈ A. Applying
the algorithm for the Membership Search Problem to ws−1

w
yields a representation of w as w = asw for a ∈ A.

• If these problems are decidable in subgroups A and B in H
with respect to SA and SB, then this algorithm halts in finite
steps with the correct output.
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Algorithm: Cyclically reduced normal forms

• The authors provide an algorithm for computing cyclically
reduced normal forms in G.

• It uses:
• The Membership Search Problem
• The Coset Representative Search Problem
• The Conjugacy Membership Search Problem, which takes

as input g ∈ H, and asks whether g is a conjugate of an
element from A or B, and if so, to find an element in A or B,
respectively, which is a conjugator.
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Bad Pairs

• Let C = A ∪ B. A bad pair (c,g) to be an element of C ×G
where c 6= 1, g 6∈ C, and gcg−1 ∈ C.

• The conjugacy problem is “hard" in bad pairs.
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Bad Pairs

Let c ∈ C \ {1} and g ∈ G \ C, where g = hp1 · · · pk in normal
form.

(c,g) is a bad pair if and only if the following system of
equations has solutions c1, . . . , ck+1 ∈ C:

Bc,b =



pkcp−1
k = c1

pk−1c1p−1
k−1 = c2

...
p1ck−1p−1

1 = ck

hckh−1 = ck+1.
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Solutions To The System of Equations

Let g and g′ be elements in G with normal forms g = hp1 · · · pk
and g′ = h′p′1 · · · p′k . The equation gc = c′g′ has solution
c, c′ ∈ C if and only if the following system of equations in
c1, c2, . . . , ck has a solution in C:

Sg,g′ =



pkc = c1p′k
pk−1c1 = c2p′k−1

...
p1ck−1 = ckp′1
hck = c′h′.

The principal system of equations is comprised of the first k
equations from Sg,g′ and is denoted by PSg,g′ . Let Eg,g′ denote
the set of all elements c ∈ C such that PSg,g′ has a solution.
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The Black Hole

The Black Hole of the conjugacy problem in G is given by

BH = N∗G(C) = {g|Cg ∩ C 6= 1},

where a bad pair (c,g) satisfies c ∈ Zg(C) = {c ∈ C|cg−1 ∈ C}
and g ∈ N∗G(C) \ C.

• Elements in the black hole BH are called singular
• Elements outside of BH are called regular.
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When is an item regular?

• uMv is a G-shift of M, where M is a subset of G and
u, v ∈ G.

• Let SI(M,G), for a collectionM of subsets of G, denote
the least set of subsets of G such that:
• SI(M,G) containsM
• it is closed under both G-shifts and finite intersections.

• Sub(C) is the set of all finitely generated subgroups of C.
• The Cardinality Search Problem on SI(Sub(C),H) takes a

set D ∈ SI(Sub(C),H) as input and asks us to determine
whether D is empty, finite, or infinite. If D is finite and
nonempty, it asks us to list all elements of D.
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Regular Element Criterion

• If the Cardinality Search Problem in decidable in
SI(Sub(C),H), then Eg,g′ can be found effectively when
given g and g′.

• Criterion for determining if an element is regular in a
HNN-extension G = 〈H, t |t−1At = B〉:
• H allows algorithms for the search membership problem in

H,
• the coset representaitve search problem in H,
• the cardinality search problem for SI(Sub(C),H) in H
• the Membership Problem for N∗H(C) in H.

Then, an algorithm exists which decides whether or not a given
element in G is regular or not.
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The CSP for regular elements in HNN-extensions

Theorem
Consider a group G, where G is an HNN-extension of a finitely
presented group H. Say G = 〈H, t |t−1At = B〉. Let A and B be
two finitely generated subgroups of G. Assume the group H
allows algorithms for the Word Problem in H, the Search
Membership Problem for A and B in H, the Coset
Representative Search Problem for subgroups A and B in H,
and the Cardinality Search Problem for SI(Sub(C),H) in H.
Then, the Conjugacy Search Problem is decidable in G for
arbitrary pairs (g,u), where g has a cyclically reduced regular
normal form of non-zero length and u ∈ G.
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Miller’s Group

Miller’s groups are constructed via HNN-extensions. Let H be a
finitely presented group given in terms of generators and
relators as

H = 〈s1, . . . , sn|R1, . . . ,Rm〉.

The Miller Group of H, denoted G(H), is constructed with
generators

q, s1, . . . , sn, t1, . . . , tm,d1, . . . ,dn

and relators

t−1
i qti = qRi ,

t−1
i sj ti = sj ,

d−1
j qdj = s−1

j qsj ,

d−1
k sjdk = sj .
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Miller’s Group

• Miller’s group is constructed as an HNN-extension so the
authors can describe the regular form of its elements.

• There is a cubic time algorithm in the length of |g| which
finds the normal form of g, and a cubic time algorithm
which finds the cyclically reduced normal form of g.

• However, the black hole of G(H) is equal to G(H).
• This means no elements are regular!
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Miller’s Group: The Strong Black Hole

• The conjugacy problem is still easy on most elements.
• The authors call these elements weakly regular, and the

elements on which the CSP is hard strongly singular.
• Strongly singular elements lie in the strong black hole of

G(H), SBH(G)

• The authors provide conjugacy criterion for weakly regular
elements.
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The CSP in Miller’s Group

• If the word problem is undecidable in a finitely presented
group H, then the conjugacy problem is undecidable in
G(H).

• The strong black hole of G is strongly negligible in G
• The Conjugacy Search Problem is decidable in cubic time

for all weakly regular elements in G(H).
• Thus, the generic-case complexity of the conjugacy search

problem in G(H) is easy, despite the fact that it is
undecidable in general.
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Proof Sketch: The SBH in G(H) is strongly negligible

• Define the sphere of radius k in a free group F to be
Sk = {w ∈ F ||w | = k}. For a subset R of F , define the
function fk by

fk (R) =
|R ∩ Sk |
|Sk |

.

• The asymptotic density ρ(R) is given by

ρ(R) = lim sup
k→∞

fk (R).

• Recall that R is called generic if ρ(R) = 1 and negligible if
the asymptotic density of its complement is 1. If there is a
positive constant δ < 1 such that 1− δk < fk (R) < 1 for all
k greater than some constant K , then R is strongly
generic. Similarly, R is strongly negligible if its complement
is strongly generic.
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Proof Sketch: The SBH in G(H) is strongly negligible

The authors prove that the strong black hole of G is strongly
negligible:

Theorem
Let

H = 〈s1, . . . , sn|R1, . . . ,Rm〉

be a finitely presented group. Let G(H) be the Miller’s group of
H. Let m > 1. Then, SBH(G) is strongly negligible, and for
k > 1,

fk (SBH(G)) <

(
n + 1
n + m

)k−1
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Proof Sketch: The SBH in G(H) is strongly negligible

Let Gk ,Bk , and Pk denote the set of all elements with length k
in G, F (S,q), and F (T ,D). Because l(g) = l(u) + l(f ) where
g = uf such that u ∈ F (T ,D) and f ∈ F (S,q), then
|Gk | = |Pk |+ |Pk−1||B1|+ · · ·+ |Bk |. Thus, for m > 1,

fk (SBH(G)) =
|Bk |
|Gk |

<
|Bk |
|Pk |

=
(2n + 2)(2n + 1)k−1

(2n + 2m)(2n + 2m − 1)k−1

<

(
n + 1
n + m

)k−1

.
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Baumslag’s Group

• In Conjugacy in Baumslag’s Group, Generic Case
Complexity, and Division in Power Circuits, Diekert,
Myasnikov, and Weiss study the conjugacy problem in:

• the Baumslag-Solitar group BS1,2
• Baumslag’s group G1,2, an HNN-extension of the

Baumslag-Solitar group.

• They show CSP is generically polynomial in Baumslag’s
group but the average-case complexity is non-elementary.
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The Baumslag Group: Definition

• The Baumslag-Solitar group is given in terms of generators
and relations by

BS1,2 = 〈a, t |tat−1 = a2〉.

• The Baumslag group is given by

G1,2 = 〈a,b|bab−1a = a2bab−1〉.
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Baumslag’s Group: CSP

• The WSP and CSP have low complexity in BS1,2.

• The WSP and CSP in G1,2 do not have low complexity.
• The CSP in Baumslag’s group is generically solvable in

polynomial time.
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Baumslag’s Group

The authors rewrite Baumslag’s group with a third generator:

G1,2 = 〈a,b, t |tat−1 = a2,bab−1 = t〉.

They give the elements of this group as their β-factorizations,
which is a word

z = γ0β1γ1 · · ·βkγk

where βi ∈ {b, b̄} and γi ∈ {a, ā, t , t̄}∗, with the length of z given
by l(z) = k .
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Britton-reduced forms

• Words given in this form can be Britton-reduced, which
means no Britton-reductions are possible.

• A word x is called cyclically Britton-reduced if xx is
Britton-reduced

• x̂ denotes a cyclically Britton-reduced form of x .
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Britton Reductions Algorithm

Britton reductions are described in the following algorithm.

Algorithm 4 Britton Reductions

1: for Some factor βγβ̄ with γ ∈ {a, ā, t , t̄}∗ do
2: if β = b and γ = a` in BS1,2 for some ` ∈ Z then
3: Replace bγb̄ with t`

4: end if
5: if β = b̄ and γ = t` in BS1,2 for some ` ∈ Z then
6: Replace b̄γb with a`

7: end if
8: end for

81 / 86



Complexity Generic-Case Complexity Non-Commutative Crypto HNN-Extensions Baumslag’s Group

CSP in Baumslag’s Group

• The word problem in G1,2 is decidable in cubic time.

• Let x , y ∈ {a, ā,b, b̄}∗. The authors show that for inputs x
and y ,
• The CSP can be carried out in time O(n4) whenever
`(x̂) > 0

• Inputs such that `(x̂) = 0 form a strongly negligible set.
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