0000

AixCoin Protocol

0000000000

Mix Incentives

Anonymity

MixCoin: Anonymity for BitCoin with Accountable Mixes Bonneau, Narayanan, Miller, Clark, Kroll, and Felten

Presented by A. Wood

The Graduate Center, CUNY

May 27, 2016

MixCoin Protocol

Mix Incentives

Anonymity

• Decentralized digital currency

Mix Incentives

Anonymity

- Decentralized digital currency
- Worth over \$6 billion

Mix Incentives

Anonymity

- Decentralized digital currency
- Worth over \$6 billion
- · Uses a public, distributed ledger to log transactions

Mix Incentives

Anonymity

- Decentralized digital currency
- Worth over \$6 billion
- Uses a public, distributed ledger to log transactions
- Pseudonymous

MixCoin Protocol

Mix Incentives

Anonymity

Psuedononymity in BitCoin

• Does not provide true anonymity

MixCoin Protocol

Mix Incentives

Anonymity

Psuedononymity in BitCoin

- Does not provide true anonymity
- Users have pseudononymous addresses

MixCoin Protocol

Mix Incentives

Anonymity

Psuedononymity in BitCoin

- Does not provide true anonymity
- Users have pseudononymous addresses
- Transactions can often be easily linked

MixCoin Protocol

Mix Incentives

Anonymity

Psuedononymity in BitCoin

- Does not provide true anonymity
- Users have pseudononymous addresses
- Transactions can often be easily linked
- If one transaction is linked to user, then all of their addresses may be exposed

Mix Incentives

Anonymity

Background: BitCoin

• An address κ is a public key

Mix Incentives

Anonymity

- An address κ is a public key
- Addresses are psuedonanymous

Mix Incentives

Anonymity

- An address κ is a public key
- Addresses are psuedonanymous
- BitCoin transaction:

MixCoin Protocol

Mix Incentives

Anonymity

Background: BitCoin

· Transactions are recorded on the blockchain

Mix Incentives

Anonymity

- Transactions are recorded on the blockchain
- Blockchain is a decentralized, publicly verifiable ledger

Mix Incentives

Anonymity

- Transactions are recorded on the blockchain
- Blockchain is a decentralized, publicly verifiable ledger
- Records all past messages exchanged between users on that Blockchain

Mix Incentives

Anonymity

- Transactions are recorded on the blockchain
- Blockchain is a decentralized, publicly verifiable ledger
- Records all past messages exchanged between users on that Blockchain
- No transactions are truly anonymous, because they are always publicly visible on the blockchain

MixCoin Protocol

Mix Incentives

Anonymity

Background: BitCoin Mixes

Used to preserve privacy for some BitCoin users. Multiple clients send coins to a mixing address, which forwards them randomly to a fresh address for each client.

MixCoin Protocol

Mix Incentives

Anonymity

Mixing Services

MixCoin Protocol

Mix Incentives

Anonymity

Mixing Services

 Take a user's coins and randomly exchange them for other user's coins

MixCoin Protocol

Mix Incentives

Anonymity

Mixing Services

- Take a user's coins and randomly exchange them for other user's coins
- Obfuscates ownership

MixCoin Protocol

Mix Incentives

Anonymity

Alice owns *N* bitcoins at address κ_{in} , which is linkable to her real-world identity. She wishes to tranfer her funds to address κ_{out} in a way which is difficult to link to κ_{in} for a fee. She sends her funds to a mix *M* which holds them for an agreed time period before sending an equal value to κ_{out} .

MixCoin Protocol

Mix Incentives

Anonymity

The Downside of Mixes

Slow mixtime

MixCoin Protocol

Mix Incentives

Anonymity

- Slow mixtime
- Low transaction volume

MixCoin Protocol

Mix Incentives

- Slow mixtime
- Low transaction volume
- Open question of linking attacks between inputs and outputs

MixCoin Protocol

Mix Incentives

Anonymity

The Downside of Mixes

No protection from theft!

MixCoin Protocol

Mix Incentives

Anonymity

The Downside of Mixes

 A malicious mix could send Alice's money to its own address instead of Alice's

Mix Incentives

- A malicious mix could send Alice's money to its own address instead of Alice's
- Alice could falsely accuse the mix of theft to undermine its reputation

Mix Incentives

- A malicious mix could send Alice's money to its own address instead of Alice's
- Alice could falsely accuse the mix of theft to undermine its reputation
- Accusations of theft cannot be proven, hence it is difficult to determine which mixes are honest

Mix Incentives

- A malicious mix could send Alice's money to its own address instead of Alice's
- Alice could falsely accuse the mix of theft to undermine its reputation
- Accusations of theft cannot be proven, hence it is difficult to determine which mixes are honest
- A malicious mix is able to link the in and out addresses, potentially undermining Alice's anonymity

MixCoin Protocol

Mix Incentives

Anonymity

Various Solutions

ZeroCoin

MixCoin Protocol

Mix Incentives

Anonymity

Various Solutions

ZeroCoin

- Provides strong anonymity
- Requires advanced cryptography
- Substantial modifications to BitCoin

Mix Incentives

Anonymity

Various Solutions

ZeroCoin

- Provides strong anonymity
- Requires advanced cryptography
- Substantial modifications to BitCoin
- Zerocash

Mix Incentives

Anonymity

Various Solutions

- ZeroCoin
 - Provides strong anonymity
 - Requires advanced cryptography
 - Substantial modifications to BitCoin
- Zerocash
 - Entirely New Currency

MixCoin Protocol

Mix Incentives

Anonymity

Various Solutions

- ZeroCoin
 - Provides strong anonymity
 - Requires advanced cryptography
 - Substantial modifications to BitCoin
- Zerocash
 - Entirely New Currency
- CoinJoin, CoinSwap

Mix Incentives

Anonymity

Various Solutions

- ZeroCoin
 - Provides strong anonymity
 - Requires advanced cryptography
 - Substantial modifications to BitCoin
- Zerocash
 - Entirely New Currency
- CoinJoin, CoinSwap
 - Backwards-compatible with BitCoin
 - · Practical complications, smaller anonymity sets

MixCoin Protocol

Mix Incentives

Anonymity

Solution: MixCoin!

• Build on the framework of mixes
MixCoin Protocol

Mix Incentives

Anonymity

Solution: MixCoin!

- Build on the framework of mixes
- Add cryptographic accountability layer

MixCoin Protocol

Mix Incentives

Anonymity

MixCoin: Accountability

MixCoin mixes issues signed warranties

Mix Incentives

Anonymity

MixCoin: Accountability

- MixCoin mixes issues signed warranties
- If Alice sends v coins by time t₁, then the mix sends v coins back to her by time t₂

Mix Incentives

MixCoin: Accountability

- MixCoin mixes issues signed warranties
- If Alice sends v coins by time t₁, then the mix sends v coins back to her by time t₂
- Alice can publish this warranty if the mix fails to deliver her coin

MixCoin Protocol

Mix Incentives

Anonymity

MixCoin: Randomized mixing fees

· Paying for mixing services incentives honest behavior

Mix Incentives

Anonymity

MixCoin: Randomized mixing fees

- Paying for mixing services incentives honest behavior
- A fixed fee can undermine anonymity in multiple mixing

Mix Incentives

Anonymity

MixCoin: Randomized mixing fees

- · Paying for mixing services incentives honest behavior
- A fixed fee can undermine anonymity in multiple mixing
- · MixCoin uses randomized, all-or-nothing fees

MixCoin Protocol

Mix Incentives

Anonymity

MixCoin: Mix indistinguishability

Single-use mix addresses

Mix Incentives

Anonymity

MixCoin: Mix indistinguishability

- Single-use mix addresses
- Passive adversaries can't determine which mix a user is interacting with

Mix Incentives

MixCoin: Mix indistinguishability

- Single-use mix addresses
- Passive adversaries can't determine which mix a user is interacting with
- Anonymity set: All users who are interacting with any mix at the same time

MixCoin Protocol

Mix Incentives

Anonymity

MixCoin: Mix networks for BitCoin

• Chains multiple mixes together

Mix Incentives

Anonymity

MixCoin: Mix networks for BitCoin

- Chains multiple mixes together
- Provides strong anonymity against an active attacker who can break mix indistinguishability

MixCoin Protocol

Mix Incentives

Anonymity

MixCoin

• Mixing completes in a few hours

MixCoin Protocol

Mix Incentives

Anonymity

- Mixing completes in a few hours
- Mixing fees less than 1%

Mix Incentives

Anonymity

- Mixing completes in a few hours
- Mixing fees less than 1%
- · Can be deployed immediately on top of BitCoin

Mix Incentives

Anonymity

MixCoin: The Idea

· MixCoin is a protocol for mixing with accountability

Mix Incentives

Anonymity

MixCoin: The Idea

- · MixCoin is a protocol for mixing with accountability
- The mix gives Alice a signed warranty which she can use to unabiguously prove that the mix has misbehaved

Mix Incentives

Anonymity

MixCoin: The Idea

- MixCoin is a protocol for mixing with accountability
- The mix gives Alice a signed warranty which she can use to unabiguously prove that the mix has misbehaved
- There is no way to prove that a mix is not storing records which could deanonymize its clients

Mix Incentives

Anonymity

MixCoin: The Idea

- MixCoin is a protocol for mixing with accountability
- The mix gives Alice a signed warranty which she can use to unabiguously prove that the mix has misbehaved
- There is no way to prove that a mix is not storing records which could deanonymize its clients
- Alice can send her coins through a series of mixes which all must collude to deanonymize her final address

Mix Incentives

Anonymity

Assumptions

• Availability of multiple mixes M_i

Mix Incentives

Anonymity

Assumptions

- Availability of multiple mixes M_i
- Mix M_i represented by warranty-signing key K_{M_i}

Mix Incentives

Anonymity

Assumptions

- Availability of multiple mixes M_i
- Mix M_i represented by warranty-signing key K_{M_i}
- Each mix's warranty-signing key is used consistently

Mix Incentives

Anonymity

Assumptions

- Availability of multiple mixes M_i
- Mix M_i represented by warranty-signing key K_{M_i}
- Each mix's warranty-signing key is used consistently
- Alice able to negotiate with mix over an anonymous, confidential channel (Tor hidden service)

/lixCoin Protocol

Mix Incentives

Anonymity

Mixing Parameters

• v, the value to be mixed

/lixCoin Protocol

Mix Incentives

Anonymity

- v, the value to be mixed
- t1, the deadline by which Alice must send funds to the mix

Mix Incentives

- v, the value to be mixed
- t1, the deadline by which Alice must send funds to the mix
- t₂, the deadline by which the mix must return funds to Alice

/lixCoin Protocol

Mix Incentives

Anonymity

- v, the value to be mixed
- t1, the deadline by which Alice must send funds to the mix
- *t*₂, the deadline by which the mix must return funds to Alice
- κ_{out} , the address where Alice is transferring her funds

/lixCoin Protocol

Mix Incentives

Anonymity

- v, the value to be mixed
- t1, the deadline by which Alice must send funds to the mix
- *t*₂, the deadline by which the mix must return funds to Alice
- κ_{out} , the address where Alice is transferring her funds
- ρ, the mixing fee

Mix Incentives

- v, the value to be mixed
- t1, the deadline by which Alice must send funds to the mix
- *t*₂, the deadline by which the mix must return funds to Alice
- κ_{out}, the address where Alice is transferring her funds
- ρ, the mixing fee
- *n*, a nonce used to determine payment of randomized mixing fees

Mix Incentives

- v, the value to be mixed
- t1, the deadline by which Alice must send funds to the mix
- *t*₂, the deadline by which the mix must return funds to Alice
- κ_{out}, the address where Alice is transferring her funds
- ρ, the mixing fee
- *n*, a nonce used to determine payment of randomized mixing fees
- *w*, the number of blocks the Mix requires to confirm Alice's payment

MixCoin Protocol

Mix Incentives

Anonymity

Mixing Parameters

• Note: the value *v* is a standardized "chunk" size which the mix accepts.

Mix Incentives

Anonymity

- Note: the value *v* is a standardized "chunk" size which the mix accepts.
- Deadlines are specified as block numbers in the BitCoin block chain.

Mix Incentives

Anonymity

- Note: the value *v* is a standardized "chunk" size which the mix accepts.
- Deadlines are specified as block numbers in the BitCoin block chain.
- w = 6 is a common standard

MixCoin Protocol

Mix Incentives

Anonymity

Alice contacts Mix over a secure channel and proposes the mixing parameters

MixCoin Protocol

Mix Incentives

Anonymity

There are two cases:

Mix Incentives

Anonymity

There are two cases:

1. The mix accepts these terms, generates a fresh escrow address κ_{esc} , and sends back a warranty containing all of Alice's parameters plus κ_{esc}
Mix Incentives

Anonymity

There are two cases:

- 1. The mix accepts these terms, generates a fresh escrow address κ_{esc} , and sends back a warranty containing all of Alice's parameters plus κ_{esc}
- 2. The mix rejects Alice's request

0000

IixCoin Protoco

Mix Incentives

Anonymity

Note that $\kappa_{\textit{out}}$ and $\kappa_{\textit{esc}}$ should be fresh addresses created specifically for mixing

MixCoin Protocol

Mix Incentives

Anonymity

Alice transfers the value v to κ_{esc} by time deadline t_1

MixCoin Protocol

Mix Incentives

Anonymity

1. The mix transfers an equal value to κ_{out} by time t_2

MixCoin Protocol

Mix Incentives

Anonymity

- 1. The mix transfers an equal value to κ_{out} by time t_2
- 2. The mix fails to transfer v to κ_{out} by time t_2

MixCoin Protocol

Mix Incentives

Anonymity

1. If the protocol is successful, A and M destroy their records

Mix Incentives

Anonymity

If the protocol is successful, *A* and *M* destroy their records
If Alice detects theft, she publicizes

 $\{\mathbf{v}, \mathbf{t}_1, \mathbf{t}_2, \mathbf{w}, \kappa_{esc}, \kappa_{out}, \rho, n\}_{K_M}$

MixCoin Protocol

Mix Incentives

Anonymity

Mixing Fees

Fixed mixing fees undermine the goal of indistinguishable transfers and limit the anonymity set

MixCoin Protocol

Mix Incentives

Anonymity

Randomized Mixing Fees

With probability *ρ* the mix retains the entire value *ν*. With probability 1 − *ρ* the mix takes no fee at all.

MixCoin Protocol

Mix Incentives

Anonymity

Randomized Mixing Fees

- With probability ρ the mix retains the entire value v. With probability 1ρ the mix takes no fee at all.
- Expected mixing rate is ρ

MixCoin Protocol

Mix Incentives

Anonymity

Randomized Mixing Fee

• Must use a publicly verifiable mechanism to randomly choose which chunks to retain as mixing fees

MixCoin Protocol

Mix Incentives

Anonymity

Randomized Mixing Fee

- Must use a publicly verifiable mechanism to randomly choose which chunks to retain as mixing fees
- Call this a beacon

AixCoin Protocol

Mix Incentives

Randomized Mixing Fee

- Must use a publicly verifiable mechanism to randomly choose which chunks to retain as mixing fees
- Call this a *beacon*
- This computation can be performed by anybody if Alice's warranty is published (hence cheating is detectable!)

Mix Incentives

Anonymity

The Beacon

• May be external to Bitcoin

Mix Incentives

Anonymity

- May be external to Bitcoin
 - e.g., NIST's beacon, financial data

Mix Incentives

Anonymity

- May be external to Bitcoin
 - e.g., NIST's beacon, financial data
- · Randomness may be extracted from future BitCoin blocks

Mix Incentives

Anonymity

- May be external to Bitcoin
 - e.g., NIST's beacon, financial data
- Randomness may be extracted from future BitCoin blocks
 - Assuming the exact set of future transactions is included in each block

Mix Incentives

Anonymity

- May be external to Bitcoin
 - e.g., NIST's beacon, financial data
- Randomness may be extracted from future BitCoin blocks
 - Assuming the exact set of future transactions is included in each block
 - Also utilizes the nonce *n* specified by Alice, used to solove the proof-of-work puzzle

MixCoin Protocol

Mix Incentives

Anonymity

Beacon from BitCoin blocks

The mix computes

$$X = \text{Beacon}(t_1, w, n) = \text{PRNG}(n || B_{t_1+w}) \xleftarrow{R} (0, 1)$$

MixCoin Protocol

Mix Incentives

Anonymity

Beacon from BitCoin blocks

The mix computes

$$X = \text{Beacon}(t_1, w, n) = \text{PRNG}(n || B_{t_1+w}) \xleftarrow{R} (0, 1)$$

• PRNG is a cryptographic pseudo random function which outputs a value uniformly drawn from the range (0, 1)

MixCoin Protocol

Mix Incentives

Anonymity

Beacon from BitCoin blocks

The mix computes

$$X = \text{Beacon}(t_1, w, n) = \text{PRNG}(n || B_{t_1+w}) \xleftarrow{R} (0, 1)$$

- PRNG is a cryptographic pseudo random function which outputs a value uniformly drawn from the range (0, 1)
- B_i is the Merkle root of block i in the BlockChain

Mix Incentives

Anonymity

Merkle Trees

• double-SHA256 (SHA256 applied twice)

Mix Incentives

Anonymity

Merkle Trees

• double-SHA256 (SHA256 applied twice)

Figure: From Wikipedia

/lixCoin Protocol

Mix Incentives

Anonymity

The MixCoin Protocol

/lixCoin Protocol

Mix Incentives

Anonymity

The MixCoin Protocol

/ixCoin Protocol

Mix Incentives

Anonymity

Mixing Fees to Miners

What if the miners would like a fee? Say they want to be paid τ BTC.

AixCoin Protocol

Mix Incentives

Anonymity

Mixing Fees to Miners

What if the miners would like a fee? Say they want to be paid τ BTC.

 $\kappa_{\rm esc}^{*}$ is a third address from which the mix previously retained a mixing fee.

/ixCoin Protocol

Mix Incentives

Anonymity

Mixing Fees to Miners

What if the miners would like a fee? Say they want to be paid τ BTC.

/ixCoin Protocol

Mix Incentives

Anonymity

Mixing Fees to Miners

What if the miners would like a fee? Say they want to be paid τ BTC.

 $\kappa^*_{\it esc}$ is a third address from which the mix previously retained a mixing fee.

Mix Incentives

Anonymity

Sequential Mixing

Mix Incentives

Anonymity

Sequential Mixing

What if Alice wants to send her funds through *N* independent mixes?

• Alices chooses a sequence of mixes M_1, M_2, \ldots, M_N

Mix Incentives

Anonymity

Sequential Mixing

- Alices chooses a sequence of mixes M₁, M₂,..., M_N
- Execute the MixCoin protocol through these mixes in reverse order

Mix Incentives

Anonymity

Sequential Mixing

- Alices chooses a sequence of mixes M_1, M_2, \ldots, M_N
- Execute the MixCoin protocol through these mixes in reverse order
- Instruct *M_i* to forward her funds to escrow address κ_{esc_{i+1}} which she previously received from *M_{i+1}*

Mix Incentives

Sequential Mixing

- Alices chooses a sequence of mixes M_1, M_2, \ldots, M_N
- Execute the MixCoin protocol through these mixes in reverse order
- Instruct *M_i* to forward her funds to escrow address κ_{esc_{i+1}} which she previously received from *M_{i+1}*
- Alice obtains N signed warranties, transfers funds to κ_{esc1}

AixCoin Protocol

Mix Incentives

Anonymity

Sequential Mixing

• Alice most likely wants to transfer kv BTC.

Mix Incentives

Anonymity

Sequential Mixing

- Alice most likely wants to transfer kv BTC.
- She must negotiate a total of *kN* warranties with mixes.
Mix Incentives

Anonymity

Sequential Mixing

- Alice most likely wants to transfer kv BTC.
- She must negotiate a total of *kN* warranties with mixes.
- Each chunk should travel through an independently-chosen random mix of sequences.

Mix Incentives

Anonymity

Mix Incentives

· Mix fees incentivize honest behavior in mixes

Mix Incentives

Anonymity

- · Mix fees incentivize honest behavior in mixes
- · Higher fees more strongly incentivize honesty

Mix Incentives

Anonymity

- · Mix fees incentivize honest behavior in mixes
- Higher fees more strongly incentivize honesty
- Users should avoid mixes charging less than some minimum value ρ

Mix Incentives

Anonymity

- Mix fees incentivize honest behavior in mixes
- Higher fees more strongly incentivize honesty
- Users should avoid mixes charging less than some minimum value ρ
- What is this ρ?

Mix Incentives

Mix Incentives

 Mix has two choices at any given block in time: continue or abscond

Mix Incentives

Anonymity

- Mix has two choices at any given block in time: continue or abscond
- *Q* is the average amount of money flowing into the mix during one block

Mix Incentives

Anonymity

- Mix has two choices at any given block in time: continue or abscond
- *Q* is the average amount of money flowing into the mix during one block
- \overline{t} is the average time period (in blocks) that the mix holds funds during a mixing round

Mix Incentives

- Mix has two choices at any given block in time: continue or abscond
- *Q* is the average amount of money flowing into the mix during one block
- \overline{t} is the average time period (in blocks) that the mix holds funds during a mixing round
- Expected value of absconding is $\mathbf{E}[abscond] = Q\overline{t}$

Mix Incentives

Anonymity

Mix Incentives

• Expected payoff from choosing to continue defined recursively

Mix Incentives

- Expected payoff from choosing to continue defined recursively
- Under steady state conditions, optimal decision the same in every round

Mix Incentives

- Expected payoff from choosing to continue defined recursively
- Under steady state conditions, optimal decision the same in every round
- · If mix chooses to continue, it will do so indefinitely

Mix Incentives

Anonymity

- Expected payoff from choosing to continue defined recursively
- Under steady state conditions, optimal decision the same in every round
- If mix chooses to continue, it will do so indefinitely
- Mix is discounting future earnings at a rate of *r* per block

Mix Incentives

Anonymity

- Expected payoff from choosing to continue defined recursively
- Under steady state conditions, optimal decision the same in every round
- If mix chooses to continue, it will do so indefinitely
- Mix is discounting future earnings at a rate of *r* per block
- Net value of indefinite honest behavior:

$$\frac{\rho Q}{r}$$

Mix Incentives

Anonymity

Mix Incentives

• To incentivize honest behavior, we need:

$$\frac{\rho}{r} > \overline{t}$$

Mix Incentives

Anonymity

Mix Incentives

• To incentivize honest behavior, we need:

$$\frac{\rho}{r} > \overline{t}$$

• Let *r* be equivalent to the highest available risk-free rate of return available

Mix Incentives

Anonymity

Mix Incentives

• To incentivize honest behavior, we need:

$$\frac{\rho}{r} > \overline{t}$$

- Let *r* be equivalent to the highest available risk-free rate of return available
- Then, all this says is that the expected value of fees collected by a mix during the time it holds funds is greater than the amount those funds would yield during the same time period if invested

Mix Incentives

Anonymity

Mix Incentives

· Low mixing fees should incentivize honest behavior

Mix Incentives

Anonymity

- · Low mixing fees should incentivize honest behavior
- If $r \approx 20\%$ available to mix, then a mix time $\bar{t} \approx 1$ hour yields lower bound $\rho_{min} \approx 2^{-15}$

Mix Incentives

Anonymity

- Low mixing fees should incentivize honest behavior
- If $r \approx 20\%$ available to mix, then a mix time $\bar{t} \approx 1$ hour yields lower bound $\rho_{min} \approx 2^{-15}$
- A chunk taking a path through 10 consecutive mixes leaves a fee rate of $\approx 2^{-12}$

Mix Incentives

Anonymity Properties: Passive Adversary

Best case scenario: Passive Adversary

Mix Incentives

Anonymity Properties: Passive Adversary

- Best case scenario: Passive Adversary
- Say adversary can determine with high probability which Bitcoin transactions are mix traffic

Mix Incentives

Anonymity Properties: Passive Adversary

- Best case scenario: Passive Adversary
- Say adversary can determine with high probability which Bitcoin transactions are mix traffic
- Adversary still may not be able to link escrow addresses to specific mixes due to their one-time nature

Anonymity Properties: Passive Adversary

- Best case scenario: Passive Adversary
- Say adversary can determine with high probability which Bitcoin transactions are mix traffic
- Adversary still may not be able to link escrow addresses to specific mixes due to their one-time nature
- This property is called mix indistinguishability

Mix Incentives

Anonymity

Anonymity Properties: Active Adversary

First attack:

Mix Incentives

Anonymity Properties: Active Adversary

First attack:

• When Alice sends a chunk from κ_{in} to the mix via κ_{esc} , the client who ultimately receives this chunk will learn that κ_{in} interacted with *M*.

Mix Incentives

Anonymity Properties: Active Adversary

First attack:

- When Alice sends a chunk from κ_{in} to the mix via κ_{esc} , the client who ultimately receives this chunk will learn that κ_{in} interacted with *M*.
- The client which sends the chunk to κ'_{esc} , eventually sent to κ_{out} , learns that Alice interacted with *M*

Mix Incentives

Anonymity Properties: Active Adversary

First attack:

- When Alice sends a chunk from κ_{in} to the mix via κ_{esc} , the client who ultimately receives this chunk will learn that κ_{in} interacted with *M*.
- The client which sends the chunk to κ'_{esc} , eventually sent to κ_{out} , learns that Alice interacted with *M*
- Active adversary can exploit this in a *flooding attack*

Introduction

MixCoin Protocol

Mix Incentives

Anonymity

Anonymity Properties: Active Adversary

Second attack:

Mix Incentives

Anonymity Properties: Active Adversary

Second attack:

• If mixes pay transaction fees, then *M* may use a fee retained from a user to pay a the transaction fees

Mix Incentives

Anonymity Properties: Active Adversary

Second attack:

- If mixes pay transaction fees, then *M* may use a fee retained from a user to pay a the transaction fees
- All of these transaction fees can then be linked to M

Mix Incentives

Mixing Multiple Chunks

• If Alice combines many mixed chunks to make a payment, her anonymity set will be reduced to the intersection of the anonymity sets of all chunks

Mix Incentives

Mixing Multiple Chunks

- If Alice combines many mixed chunks to make a payment, her anonymity set will be reduced to the intersection of the anonymity sets of all chunks
- If she mixed those chunks sufficiently, they will have the same anonymity set

Mix Incentives

Mixing Multiple Chunks

- If Alice combines many mixed chunks to make a payment, her anonymity set will be reduced to the intersection of the anonymity sets of all chunks
- If she mixed those chunks sufficiently, they will have the same anonymity set
- If even one chunk travels through a path consisting entirely of comprimised mixes, her entire payment loses anonymity

Mix Incentives

Mixing Multiple Chunks

- If Alice combines many mixed chunks to make a payment, her anonymity set will be reduced to the intersection of the anonymity sets of all chunks
- If she mixed those chunks sufficiently, they will have the same anonymity set
- If even one chunk travels through a path consisting entirely of comprimised mixes, her entire payment loses anonymity
- If 25% of mixes are comprimised, there is a 2⁻²⁰ chance of routing a chunk through a chain of ten comprimised mixes

Introduction

MixCoin Protocol

Mix Incentives

Anonymity

Acknowledgements

I would like to thank Dr. Rosario Gennaro for teaching this course.
Introduction

MixCoin Protocol

Mix Incentives

Anonymity

Bibliography

Mixcoin: Anonymity for BitCoin with Accountable Mixes, Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A. Kroll, Edward W. Felten. International Financial Cryptography Association 2014, LCNS 8437, pp.486-504.