
Alexander Wood MEASURE THEORY REVIEW Chapter 2

Selected problems & solutions to Royden.

1 Chapter 2

Problem (1). Prove that if A and B are two sets in A with A ⊆ B, then m(A) ≤ m(B). This
property is called monotonicity.

Proof. If m(B) = ∞, then clearly the inequality holds true. Assume m(B) < ∞ and write B =
A ∪ (B \A), where A ∩ (B \A) = ∅. Then, by σ-additivity,

m(B) = m(A ∪ (B \A)) = m(A) +m(B \A)

thus
m(B)−m(A) = m(B \A) ≥ 0

which implies that
m(B) ≥ m(A).

Problem (2). Prove that if there is a set A in the collection A for which m(A) <∞, then m(∅) = 0.

Proof. Observe that A = ∅ ∪A, where ∅ ∩A = ∅. Thus, by σ-additivity,

m(A) = m(A ∪ ∅) = m(A) +m(∅)

and since m(A) is finite, we can subtract to conclude that

0 = m(∅).

Problem (3). Let {Ek}∞k=1 be a countable collection of sets in A. Prove that m (
⋃∞
k=1Ek) ≤∑∞

k=1m(Ek).

Proof. Let {Ek}∞k=1 be a countable collection of sets in A, and define {Bk}∞k=1 as follows:

B1 = E1

B2 = E2 \B1

...

Bn = En \

n−1⋃
j=1

Ej


...

Clearly,
⋃∞
k=1Bk ⊆

⋃∞
k=1Ek.

On the other hand, let x ∈
⋃∞
k=1Ek and let k0 be the first k ∈ Z such that x ∈ Ek0 . Then,

x ∈ Bk0 , and thus x ∈
⋃∞
k=1Bk. Therefore,

⋃∞
k=1Ek =

⋃∞
k=1Bk. Then, by σ-additivity,

m

( ∞⋃
k=1

Ek

)
= m

( ∞⋃
k=1

Bk

)
=

∞∑
k=1

m(Bk)
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and by monotonicity,
∞∑
k=1

m(Bk) ≤
∞∑
k=1

m(Ek)

.

Problem (4). The set function, c, defined on all subsets of R is defined as follows:

c(E) =


∞, E is finite

|E|, E is finite

0, E = ∅

Show that c is countably additive and translation invariant.

Proof. (Alexander’s proof)
First we will show that c is countably additive over countable disjoint unions of sets. Let {Ek}∞k=1

be a countably infinite collection of disjoint subsets of R. If Ei is infinite for some i, then
⋃∞
k=1Ek

is an infinite set, and

c

( ∞⋃
k=1

Ek

)
=∞ =

∞∑
k=1

c(Ek).

Now assume that Ei is not infinite for any i. Since the subsets are disjoint,

∞∑
k=1

c(Ek) =

∞∑
k=1

|Ek| =

∣∣∣∣∣
∞⋃
k=1

Ek

∣∣∣∣∣ = c

( ∞⋃
k=1

Ek

)

and thus c is countably additive.
Next, we will show that c is translation invariant. First, consider the case where E is infinite.

Then c(E) =∞ and c(E + y) =∞. If E is empty, then E + y is empty, and c(E) = 0 = c(E + y).
If E is finite and nonempty, then we can say |E| = n, and E = {e1, e2, . . . , en} for ei ∈ R. Thus,
E + y = {e1 + y, e2 + y, . . . , en + y} and |E + y| = y. Thus, c(E) = c(E + y), and c is translation
invariant.

Problem (5). Prove the interval [0, 1] is uncountable.

Proof. Assume to the contrary [0, 1] is countable. Then, since the measure of a countable set is
zero, m∗([0, 1]) = 0. However, m∗([0, 1]) = `([0, 1]) = 1− 0 = 1, a contradiction, since 1 6= 0. Thus,
[0, 1] is not countable.

Problem (6). Let A be the set of irrational numbers in [0, 1]. Prove that m∗(A) = 1.

Proof. Observe that [0, 1] = ([0, 1] ∩ A) ∪ ([0, 1] ∩Q) = A ∪ ([0, 1] ∩Q). Since A ∩ ([0, 1] ∩Q) = ∅,
by σ-additivity,

m∗([0, 1]) = m∗(A ∪ ([0, 1] ∩Q))

= m∗(A) +m∗([0, 1] ∩Q)

= m∗(A) + 0

and thus we see that m∗(A) = m∗([0, 1]) = 1.
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Problem (7). A set of real numbers is said to be a Gδ set provided it is the intersection of a
countable collection of open sets. Show that for any bounded set E, there is a Gδ set G such that

E ⊆ G and m∗(G) = m∗(E).

Proof. By the definition of Lebesgue outer measure,

m∗(E) = glb

{ ∞∑
k=1

`(Ik) : E ⊆
∞⋃
k=1

Ik and Ik open, nonempty

}
.

By definition of glb, there is an open cover of E, {Ij,n}∞j=1, for each 1
n , where

∞∑
k=1

`(Ik,n) ≤ m∗(E) +
1

n
.

Let On =
⋃∞
j=1 Ij,n, where On is an open set covering E for each n. Then E ⊆

⋂∞
n=1On. Let

G =
⋂∞
n=1On. Note that G is a Gδ set and E ⊆ G.

By monotonicity, m∗(E) ≤ m∗(G). Also, since On ⊇ G, by monotonicity,

m∗(E) ≤ m∗(G) ≤ m∗(On).

Note that one covering of On is is {Ik,n}∞k=1, ie, On covers itself. Since m∗(On) is the glb of all
open covers of On,

m∗(On) ≤
∞∑
j=1

`(Ij,n) ≤ m∗(E) +
1

n
.

Thus, m∗(E) ≤ m∗(G) ≤ m∗(E) + 1
n . Thus, m∗(E) = m∗(G).

Problem (8). Let B be the set of rational numbers in [0, 1] and let {Ik}∞k=1 be a finite collection
of open intervals that covers B. Prove that

∑∞
k=1m

∗(Ik) ≥ 1.

Proof. (Alexander’s proof)
Since {Ik}∞k=1 is a countable collection of open intervals, we can write out the intervals ordered
by left endpoint, i.e., write them as (a1, b1), (a2, b2), . . . , (an, bn), where a1 ≤ a2 ≤ · · · ≤ an. Note
that aj ≤ bj−1 for all 1 ≤ j ≤ n, because otherwise there is an interval (bj−1, aj) 6⊆

⋃∞
k=1 Ik,

a contradiction (since this interval contains rational numbers). We know that 0 ∈ (a1, b1) and
1 ∈ (an, bn), and thus a1 ≤ 0 and bn ≥ 1. Thus,

∞∑
k=1

m∗(Ik) =

∞∑
k=1

`(Ik) =

∞∑
k=1

`((ak, bk))

where

∞∑
k=1

`((ak, bk)) = (bn − an) + (bn−1 − an−1) + · · ·+ (b1 − a1)

= bn + (bn−1 − an) + (bn−2 − an−1) + · · ·+ (b1 − a2)− a1

≥ bn − a1

≥ 1

Thus,
∑∞

k=1m
∗(Ik) ≥ 1.
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Problem (9). Prove that if m∗(A) = 0, then m∗(A ∪B) = m∗(B).

Proof. If m∗(B) = ∞, then the inequality holds. Assume m∗(B) < ∞. Generally, m∗(B) ≤
m∗(A∪B). Furthermore, by σ-additivity, we know that m∗(A∪B) ≤ m∗(A)+m∗(B) = 0+m∗(B).
Thus m∗(B) = m∗(A ∪B).

Problem (10). Let A and B be bounded sets for which there is an α > 0 such that |a− b| ≥ α for
all a ∈ A, b ∈ B. Prove that m∗(A ∪B) = m∗(A) +m∗(B).

Proof. Let {Ij}∞j=1 be a covering of A ∪ B with open intervals `(Ij) < α
2 and

∑∞
j=1 `(Ij) ≤

m∗(A∪B) + ε. Note that if Ij ∩ A 6= ∅ then Ij ∩ B = ∅. Thus, we can split the intervals into
a covering of A and a covering of B. Say {IAj }∞j=1 covers A, where IAj ∩A 6= ∅ for all j, and {IBj }∞j=1

covers B, where IBj ∩B 6= ∅ for all j.
Now, observe the outer measure:

m∗(A ∪B) + ε ≥
∞∑
j=1

`(Ij) ≥
∞∑
j=1

`(IAj ) +

∞∑
j=1

`(IBj ) ≥ m∗(A) +m∗(B).

Since by subadditivity we know that m∗(A) +m∗(B) ≥ m∗(A ∪B), then

m∗(A) +m∗(B) = m∗(A ∪B).

Problem (11). Prove that if a σ-algebra of subsets of R contains intervals of the form (a,∞), then
it contains all intervals.

Proof. Let A be a σ-algebra which contains all real intervals of the form (a,∞). Then, for a < b,

• (−∞, a] = (a,∞)C ∈ A

• (−∞, a) =
⋃∞
k=1(−∞, a− 1

k ] ∈ A

• [a,∞) = (−∞, a)C ∈ A

• (−∞, b] ∩ [a,∞) = [a, b] ∈ A

• (−∞, b) ∩ (a,∞) = (a, b) ∈ A

• (−∞, b) ∩ [a,∞) = [a, b) ∈ A

• (−∞, b] ∩ (a,∞) = (a, b] ∈ A

• (−∞, a] ∩ [a,∞) = {a} ∈ A

• (−∞, a] ∩ [b,∞) = ∅ ∈ A

•
⋃∞
k=1(−k, k) = R ∈ A

Thus, A contains all intervals.

Problem (12). Every interval is a Borel set.

Proof. The collection B of Borel sets of R is the smallest σ-algebra of sets of R containing all open
sets in R. Since every open set is in B, then every set of real numbers of the form (a,∞) is in B.
Thus, by the previous exercise, every interval is a Borel set.
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Problem (13). Show that (i) the translate of an Fσ set is also Fσ, and (ii) the translate of a Gδ
set is also Gδ, and (iii) the translate of a set of measure zero is also measure zero.

Proof. (i) Let F be an Fσ set. Then, F is a countable union of closed sets. Say F = ∪∞k=1Fk, where
Fk is closed for all k. Then,

F + y = (∪∞k=1Fk) + y = ∪∞k=1(Fk + y)

where Fk + y is closed for all k. Thus, F + y is an Fσ set.
(ii) Let G be a Gδ set. Then, G =

⋂∞
k=1Ok where Ok is open for all k. Then,

G+ y =

( ∞⋂
k=1

Ok

)
+ y =

∞⋂
k=1

(Ok + y)

where Ok + y is open for all k. Thus, G+ y is Gδ.
(iii) Suppose E is a set of measure zero, ie, m∗(E) = 0. Let {Ij}∞j=1 be an open covering of E

with
∑∞

j=1 `(Ij) < ε for each ε > 0. Then,

E + y ⊂

 ∞⋃
j=1

Ij

+ y =
∞⋃
j=1

(Ij + y).

Thus,

m∗(E + y) ≤
∞∑
j=1

`(Ij + y) =
∞∑
j=1

`(Ij) < ε

and therefore m∗(E + y) = 0.

Problem (14). If E has positive outer measure, then there is a bounded subset of E that also has
positive outer measure.

Proof. (Alexander’s proof)
If E is bounded, then we are done. Assume E is not bounded. Then,

E =
⋃
n∈Z

E ∩ [n, n+ 1].

By σ-subadditivity,

0 < m∗(E) = m∗

(⋃
n∈Z

E ∩ [n, n+ 1]

)
≤
∑
n∈Z

m∗(E ∩ [n, n+ 1])

Thus, there is at least one m ∈ Z such that m∗(E ∩ [m,m+ 1]) > 0. Therefore, E ∩ [m,m+ 1] is a
bounded subset of E with positive outer measure.

Problem (15). Show that if E has finite measure and ε > 0, then E is the disjoint union of a finite
number of measurable sets, each of which has measure at most ε.

Proof. (Alexander’s proof)
Assume a set A has finite outer measure, m∗(A) <∞. Let En = (−n, n] ∩A. Note that

m∗(A) = lim
n→∞

m∗((−n, n] ∩A) = lim
n→∞

m∗(En)
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and thus
|m∗(A)−m∗(En)| < ε

which implies by the incision property that

m∗(A \ En) ≤ |m∗(A)−m∗(En)| < ε.

Thus, we can consider the set En = E, a bounded set of finite measure. Say that glb(E) = x and
lub(E) = y, and let n be the integer such that y ∈ [x+ (n− 1)ε, x+ nε). Then, the (measurable)
intervals

I1 = [x, x+ ε)

I2 = [x+ ε, x+ 2ε)

...

In−1 = [x+ (n− 2)ε, x+ (n− 1)ε)

In = [x+ (n− 1)ε, x+ nε)

is a covering of E, where Ij ∩ Ik = ∅ and m∗(Ik) = ε for all j, k. Now, define

J1 = E ∩ I1

J2 = E ∩ I2

...

Jn = E ∩ In

Since Ij ∩ Ik = ∅, then Jj ∩ Jk = ∅ for all j, k. Furthermore, 0 ≤ m∗(Jk) ≤ ε, and

n⋃
k=1

Jk =
n⋃
k=1

E ∩ Ik = (E ∩ I1) ∪ (E ∩ I2) ∪ · · · ∪ (E ∩ In) = E ∩ (∪nk=1Ik) = E,

since E ⊆ ∪nk=1Ik. Thus, we see that E is the disjoint union of a finite number of measurable sets,
each of which has measure at most ε.

Problem (16). Complete the proof to Theorem 11 by showing that measurablility is equivalent to
(iii) and also equilvalent to (iv).

(iii): For each ε > 0, there is a closed set F contained in E for which m∗(E \ F ) < ε.
(iv): There is an Fσ set F contained in E for which m∗(E \ F ) = 0.

Proof. (iii): Since E is measurable, then Ec is also measurable, and by Theorem 11 part (ii), there
is a Gδ set G containing Ec for which m∗(G \Ec) = 0 < ε. This implies that F = Gc ⊂ E and F is
clsoed. Furthermore, E \ F = E ∩G = G ∩ E = G \ Ec. Therefore, m∗(E \ F ) = m∗(G \ Ec) < ε.

(iv): Given any ε > 0, there is an Fn ⊂ E such that m∗(E \ Fn) < ε by party (iii). Set
Fσ =

⋃∞
n=1 Fn. Then,

m∗(E \ Fσ) = m∗

(
E \

( ∞⋃
n=1

Fn

))
≤ m∗(E \ Fn) < ε.

Thus, since ε can be arbitrarily small, m∗(E \ Fσ) = 0.

6
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Lastly, we want to show that (iv) implies measurablility. So, assume there is an Fσ set F
contained in E for which m∗(E \ F ) = 0. Note that E = F ∪ (E \ F ). We know that E \ F is
measurable since any set with outer measure zero is measurable, and F is Fσ and thus measurable.
Because countable unions of measurable sets is measurable, the entire right hand side of the equation
is measurable. Thus, E is measurable.

Problem (17). Show that a set E is measurable if and only if for each ε > 0, there is a closed set
F and open set O for which F ⊆ O ⊆ E and m∗(O \ F ) < ε.

Proof. “ ⇒ ” Assume E is measurable. Then by Theorem 11, there is a closed set F ⊆ E such
that m∗(E \ F ) < ε

2 and an open set O ⊇ E such that m∗(O \ E) < ε
2 . Furthermore,

m∗(O \ F ) = m∗((E \ F ) ∪ (O \ E)) = m∗(E \ F ) +m∗(O \ E) =
ε

2
+
ε

2
= ε.

“ ⇐ ” Conversely, assume m∗(O \ F ) < ε. Since E \ F ⊂ O \ F , mononicity implies that
m∗(E \ F ) < m∗(O \ F ) < ε. Thus, by Theorem 11, E is measurable.

Problem (18). Let m(E) <∞. Show that there is an Fσ set F and Gδ set G such that F ⊆ E ⊆ G
and m∗(F ) = m∗(E) = m∗(G).

Proof. Assume E has finite measure. Then, by Theorem 11, there is an Fσ set F such that F ⊆ E
and m∗(E \ F ) = 0 and a Gδ set G such that E ⊆ G and m∗(G \ E) = 0.

Since E is measurable, we can apply the excision property to conclude that

m∗(E \ F ) = m∗(E)−m∗(F ) = 0 and m∗(G \ E) = m∗(G)−m∗(E) = 0

and thus
m∗(E) = m∗(F ) and m∗(G) = m∗(E).

Problem (19*). Assume E has finite outer measure. Show that if E is not measurable, then there
is an open set O containing E that has finite outer measure and for which

m∗(O \ E) > m∗(O)−m∗(E).

Proof. Assume E is not measurable and assume to the contrary that for all open sets O containing
E, m∗(O\E) ≤ m∗(O)−m∗(E). By the definition of outer measure, there is a collection of intervals
{Ij}∞j=1 such that

∑∞
j=1 `(Ij) ≤ m∗(E) + ε.

Consider O =
⋃∞
j=1 Ij . Then,

m∗(O) ≤
∞∑
j=1

`(Ij) ≤ m∗(E) + ε.

Then, m∗(O) −m∗(E) < ε, which implies by our contradictory assumption that m∗(O \ E) < ε.
Since ε is arbitary, this implies that E is measurable by Theorem 11, a contradiction.

Problem (20). Let E have finite outer measure. Show that E is measurable if and only if for each
open, bounded interval (a, b),

b− a = m∗((a, b) ∩ E) +m∗((a, b) \ E)

7
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Proof. “⇒ ” Assume E is measurable and consider the open, bounded interval (a, b). Then,

b− a = m∗((a, b)) = m∗((a, b) ∩ E) +m∗((a, b) \ E)).

“⇐ ” Converesly, let b− a = m∗((a, b) ∩ E) +m∗((a, b) \ E). Note that

m∗(E) = glb

{ ∞∑
k=1

`(Ik) :
∞⋃
k=1

Ik ⊇ E

}
.

Let ε > 0. There exists a collection of intervals {Ik}∞k=1 such that
∑∞

k=1 `(Ik) ≤ m∗(E) + ε. Denote
each Ik = (ak, bk), and let O =

⋃∞
k=1(ak, bk). Then,

∞∑
k=1

`((ak, bk)) =
∞∑
k=1

[m∗((ak, bk) ∩ E) +m∗((ak, bk) ∩ Ec)] ≤ m∗(E) + ε.

Therefore,

m∗(O ∩ E) +m∗(O ∩ Ec) ≤
∞∑
k=1

m∗((ak, bk) ∩ E) +
∞∑
k=1

m∗((ak, bk) ∩ Ec) < m∗(E) + ε.

Since E is finite,

m∗(O ∩ E) +m∗(O ∩ Ec) < m∗(E) + ε

m∗(E) +m∗(O \ E) < m∗(E) + ε

m∗(O \ E) < ε

and thus E is measurable by Theorem 11.

Problem (21). Use property (ii) of Theorem 11 as the primitive defninition of a measurable set
and prove that the union of two measurable sets is measurable. Then do the same with property
(iv).

Proof. Let E1, E2 be measurable sets. Let G1, G2 be Gδ sets such that G1 ⊃ E1 and G2 ⊃ E2,
where m∗(G1 \ E1) = 0 and m∗(G2 \ E2) = 0.

Note that (G1 ∪G2) \ (E1 ∪ E2) = (G1 \ (E1 ∪ E2)) ∪ (G2 \ (E1 ∪ E2)). Thus,

m∗((G1 ∪G2) \ (E1 ∪ E2)) = m∗((G1 \ (E1 ∪ E2)) ∪ (G2 \ (E1 ∪ E2)))

≤ m∗((G1 \ (E1 ∪ E2))) +m∗((G2 \ (E1 ∪ E2)))

≤ m∗(G1 \ E1) +m∗(G2 \ E2)

≤ 0 + 0 = 0

and thus m∗(E1 ∪ E2) = 0.
Now, for E1 and E2 measurable, by property (iv) there are Fσ sets F1 and F2, where F1 ⊂ E1

and F2 ⊂ E2, such that m∗(E1 \ F1) = 0 and m∗(E2 \ F2) = 0. Note that (E1 ∪ E2) \ (F1 ∪ F2) ⊆
(E1 \ F1) ∪ (E1 \ F2). Therefore,

m∗((E1 ∪ E2) \ (F1 ∪ F2)) ≤ m∗(E1 \ F1) +m∗(E1 \ F2)

≤ 0 + 0 = 0

Thus, E1 ∪ E2 is measurable.

8
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Problem (22). For any set A, define m∗∗(A) ∈ [0,∞] by m∗∗(A) = inf{m∗(O)|A ⊂ O,Oopen}.
How is m∗∗ related to m∗. They are equal.

Proof. First, we will show m∗(A) ≤ m∗∗(A). Let O be an open set such that A ⊂ O. Any open
set can be written as the xxx of disjoint open intervals Ij . Since O is measurable by σ-additivity,
m(O) =

∑∞
j=1m(Ij) =

∑∞
j=1 `(Ij). (Note that m∗(O) = m(O)). Since A ⊂ O =

⋃∞
j=1 Ij , then

{Ij} is a covering with open intervals of A, then

m∗(A) = glb

{ ∞∑
k=1

`(Ik)|A ⊂
∞⋃
k=1

Ik

}
≤ m(O),

so m∗(A) is a lower bound of {m∗(O)|A ⊂ O}, then m∗(A) ≤ m∗∗(A).
Now we will show m∗∗(A) ≤ m∗(A). We consider a covering of A with open intervals such that∑∞
j=1 `(Ij) ≤ m∗(A) + ε. Now,

⋃∞
j=1 Ij = O, an open set, and

m∗∗(A) ≤ m(O) ≤
∞∑
j=1

m(Ij),

by subadditivity, and
∞∑
j=1

m(Ij) =
∞∑
j=1

`(Ij) ≤ m∗(A) + ε

for an arbitrary ε. This implies that m∗∗(A) ≤ m∗(A).

Problem (23). For any set A, define m∗∗∗(A) ∈ [0,∞] by m∗∗∗(A) = lub{m∗(F)|F ⊂ A,Fclosed}.
How is m∗∗∗ related to m∗.

Proof. We will prove that m∗∗∗ ≤ m∗. Since F is closed, F is measurable. Since F ⊂ A, by
monotonicity m∗(F) ≤ m∗(A). Then, m∗(A) is an upper bound of m∗(F ) for all F ⊂ A, then
lub{m∗(F )} ≤ m∗(A). Then, m∗∗∗ ≤ m∗.

And example where inner measure is strictly less than outer measure is the Vitali set (or, any
nonmeasurable set).

Problem (24). Show that if E1 and E2 are measureable then m(E1∪E2)+m(E1∩E2) = m(E1)+
m(E2).

Proof. If m(E1) = ∞ or m(E2) = ∞, then the equality holds. So, assume m(E1) and m(E2) are
finite. We know from set theory that E1 ∪E2 = E1 \ (E1 ∩E2)∪ (E1 ∩E2)∪E2 \ (E1 ∩E2). Then,

m(E1 ∪ E2) = m(E1 \ (E1 ∩ E2)) +m(E1 ∩ E2) +m(E2 \ (E1 ∩ E2))

and by the excision property,

m(E1 ∪ E2) = m(E1)−m(E1 ∩ E2) +m(E1 ∩ E2) +m(E2)−m(E1 ∩ E2)

m(E1 ∪ E2) +m(E1 ∩ E2) = m(E1) +m(E2).

Problem (25). Show that m(B1) < ∞ is necessary in Theorem 15, part (ii), of the theorem
regarding continuity of measure.

9
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Proof. Proceed by contradiction. Note that Bn = [n,∞),
⋂∞
n=1Bn = ∅, m(∅) = 0. So consider the

measure of each Bn individually, m(Bn) =∞. Then, limn→∞m(Bn) =∞. Contradiction.

Problem (26). Let {Ek}∞k=1 be a countable disjoint collection of measurable sets. Prove that for
any set A,

m∗

(
A ∩

∞⋃
k=1

Ek

)
=
∞∑
k=1

m∗(A ∩ Ek)

Proof. We know that for any j, Ej ⊆
⋃∞
j=1Ej . Thus, A ∩ Ej ⊆ A ∩

⋃∞
j=1Ej . By monotonicity,

∞∑
j=1

m∗(A ∩ Ej) ≤ m∗
A ∩ ∞⋃

j=1

Ej

 .

To see the inequality in the other direction, observe that by σ-subadditivity,

m∗

A ∩ ∞⋃
j=1

Ej

 = m∗

 ∞⋃
j=1

(A ∩ Ej)

 ≤ ∞∑
j=1

m∗(A ∩ Ej)

by subadditivity.

Problem (27). LetM′ be any σ-algebra of subsets of R and m′ a set function onM′ which takes
values in [0,∞], is countably additive, and such that m′(∅) = 0.

• (i) Show that m′ is finitely additive, monotone, countably monotone, and posseses the excision
property.

• (ii) Show that m′ possesses the same continuity properties as Lebesgue measure.

Proof. • (i) Finitely additive: Consider disjoint, finite sets E1, E2, . . . , EN , ∅, ∅, . . . . Then, by
σ-additivity,

m′

 N⋃
j=1

Ej

 =

N∑
j=1

m′(Ej)

Monotonicity: Assume A ⊂ B. Then, B = A ∪ B \ A. By σ-additivity, m(B) = m(A) +
m(B \A). But, m(B \A) ≥ 0, which implies that m(A) ≤ m(B).

Countable monotonicity: Countable monotonicity states that

m(E) = m

 ∞⋃
j=1

Ej

 ≤ ∞∑
j=1

m(Ej),

where {Ej} is a countable collection of sets in M′. We disjoint the sets. Say

B1 = E1

B2 = E2 −B1

...

BN = EN −

N−1⋃
j=1

Bj


...

10
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where
⋃∞
j=1Bj =

⋃∞
j=1Ej . Now, the {Bj} are disjoint by σ-additivity of m′:

m′

 ∞⋃
j=1

Bj

 =

∞∑
j=1

m′(Bj) ≤
∞∑
j=1

m(Ej).

Excision property: The excision property states that if A ⊂ B, then B = A∪(B \A). Assume
m′(A) < ∞. If m′(B) = ∞, then m′(B \ A) = ∞. Then since m′(B) = m′(A) + m′(B \ A),
m′(B)−m′(A) = m(B\A). If m′(B) <∞, then by subadditivity m′(B) = m′(A)+m′(B\A).
Then m′(B)−m′(A) = m′(B \A).

Problem (28). Show that continuity of measure together with finite additivity of measure implies
countable additivity of measure (σ-additivity).

Proof. Let {Ej} be a disjoint collection of measurable sets. Let Cn =
⋃N
j=1Ej , and note that

CN ⊂ CN+i (increasing) and
⋃∞
N=1CN =

⋃∞
j=1Ej . Then, by continuity from below,

= m

 ∞⋃
j=1

Ej

 = m

( ∞⋃
N=1

CN

)
= limm(CN )

from which we see that

limm(CN ) = lim
N→∞

m

 N⋃
j=1

Ej

 = lim
N→∞

N∑
j=1

m(Ej) =

N∑
j=1

m(Ej).

Problem (29). • (i) Show that rational equivalence defines an equivalence relation on any set.

• (ii∗) Explicitly find a choice set for the rational equivalence relation on Q.

• (iii) Define two numbers to be irrationally equivalent provided their difference is irrational.
Is this an equivalence relation on R? Is this an equivalence relation on Q?

Proof. • (i) Consider a set A, where x, y ∈ A, and say x ∼ y if x−y is rational. We must check
that ∼ is reflexive, symmetric, and transitive.

– Reflexive: x− x = 0 ∈ Q.

– Symmetric: If x− y = r ∈ Q, then y − x = −r ∈ Q.

– Transitive: Assume x− y = r1 ∈ Q and y − z = r2 ∈ Q. Then, x− z = x− y + y − z =
r1 + r2 ∈ Q.

• (ii∗) As seen in the proof of Theorem 17, the choice set for the rational equivalence relation on
Q is not measurable. Thus, we cannot explicitly state it. However, we know that two numbers
will be in the same equivalence class if they are non-repeating decimals that eventually match
up.

• (iii) No. In both R or Q, this fails to be reflexive.

11
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Problem (30). Show that any choice set for the rational equivalence relation on a set of positive
outer measure must be uncountably infinite.

Proof. Assume to the contrary that there is a choice set for the rational equivalence relation on a
set of positive outer measure that is not uncountable. Then, it is either countably infinite or finite.
In either case, it is measurable–a contradiction.

Problem (31). Justify the assertion in the proof of Vitali’s Theorem that it suffices to consider
the case that E is bounded.

Proof. Note that E =
⋃∞
n=1E ∩ (−n, n). By the subadditivity of outer measure,

0 < m∗(E) = m∗

( ∞⋃
n=1

E ∩ (−n, n)

)
≤
∞∑
n=1

m∗(E ∩ (−n, n)).

Thus, there is an n0 such that m∗(E ∩ (−n0, n0)) > 0. Thus, showing that the bounded set
E ∩ (−n0, n0) contains a subset that fails to be measurable is sufficient to show that E contains a
subset that fails to be measurable.

Problem (32). Does Lemma 16 remain true if Λ is allowed to be finite or to be uncountably
infinite? Does it remain true if Λ is allowed to be unbounded?

Lemma 16: Let E be a bounded measurable set of real numbers. Suppose there is a bounded
countably infinite set of real numbers Λ for which the collection of translates of E, {λ+ E}λ∈Λ is
disjoint. Then, m(E) = 0.

Proof. We know that
⋃
λ∈Λ λ+ E is bounded. Then, m

(⋃
λ∈Λ λ+ E

)
<∞. However,

m

(⋃
λ∈Λ

λj + E

)
=
∞∑
j=1

m(λj + E).

Since m is translation invariant,

m

(⋃
λ∈Λ

λj + E

)
=
∞∑
j=1

m(λj + E) =
∞∑
j=1

m(E),

which implies that m(E) = 0.

Problem (33). Let E be a nonmeasurable set of finite outer measure. Show that there is a Gδ set
G that contains E for which m∗(E) = m∗(G) while m∗(G \ E) > 0.

Proof. (Alexander’s proof)
Note that if m∗(E) = m∗(G) then m∗(G)−m∗(E) = 0. So we can restate the problem to want to
show that m∗(G\E) > m∗(G)−m∗(E). Assume to the contrary that m∗(G\E) ≤ m∗(G)−m∗(E).

Let {Ik,n = {Ik,n}∞k=1}
∞
n=1 be a collection of open coverings of E, and let In =

⋃∞
k=1 Ik,n. Note

that m∗(In) ≤
∑∞

k=1 `(In) ≤ m∗(E) + ε for ε > 0. Now, let G =
⋂∞
n=1 In. Then, G is a Gδ set and

E ⊆ G. Observe for any n:

m(G) ≤ m∗
( ∞⋂
n=1

In

)
≤ m∗(In) < m∗(E) + ε

and thus m∗(G) ≤ m∗(E) + ε. Finally, observe that

m∗(G \ E) ≤ m∗(G)−m∗(E) < ε,

which implies that E is measurable, a contradiction.

12
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Problem (34). Show there is a continuous, strictly increasing function on the interval [0, 1] that
maps a set of positive measure onto a set of measure zero.

Proof. We consider ψ0 : [0, 1] → [0, 1] defined as ψ0(x) = 1
2ψ = 1

2 [φ(x) + x], a function that is
continuous and strictly increasing. This function is invertable.

Let ψ[−1](B) denote inverse image, and ψ(−1)(B) denote the inverse function. Since ψ is one

to one, etc, the inverse image and the inverse function are the same. Note that [ψ
(−1)
0 ][−1](O) =

[ψ
(−1)
0 ](−1)(O) = ψ0(O).

Note that m(ψ0(c)) = 1
2 . Also note that ψ

(−1)
0 (ψ0(c)) = c. Thus, m(ψ

(−1)
0 (ψ0(c))) = m(c) = 0.

Problem (38). Let the function f : [a, b]→ R be Lipschitz, that is, there is a constant c ≥ 0 such
that for all u, v ∈ [a, b], |f(u)− f(v)| ≤ c|u− v|. Show that f maps a set of measure zero onto a set
of measure zero. Show that f maps an Fσ set onto an Fσ set. Conclude that f maps a measurable
set to a measurable set.

Proof.

2 Chapter 3

Problem (1). Suppose f and g are continuous functions on [a, b]. Show that if f = g almost
everywhere on [a, b], then, in fact, f = g on [a, b]. Prove that a similar assertion is not true if [a, b]
is replaced by a general measurable set E.

Proof. Let N = {x ∈ [a, b] : f(x) 6= g(x)}. Since f = g almost everywhere on [a, b], m(N) = 0.
Let x ∈ N and n ∈ N, and consider a sequence of intervals In =

(
x− 1

n , x+ 1
n

)
, together

with
(
a, a+ 1

n

)
and

(
b− 1

n , b
)
. Note that each In has positive outer measure, and when n is large

enough, In∩A 6= ∅ and In∩N = {x}. Consider a sequence xn ∈ In. Then, when n is large enough,
xn 6∈ N , xn ∈ A, and limxn = x. Since f(xn) = g(xn),

f(x) = lim
n→∞

f(xn) = lim
n→∞

g(xn) = g(x).

Now, consider two functions f and g with domains in Z defined by f(x) = 1 and g(x) = 0 for
all x ∈ Z. Then, since m(Z) = 0, f = g almost everywhere on Z. However, f and g certainly are
not equal. Thus, the assertion does not hold for all sets.

Problem (2). Let D and E be measurable sets and f a function with domain D ∪ E. We proved
that f is measurable on D∪E if and only if its restrictions to D and E are measurable. Show that
the same is not true if “measurable” is replaced by “continuous.”

Proof. Consider a function f , defined by

f(x) =

{
0 if x ∈ [0, 1]

1 if x ∈ (1, 2]

Note that f is continuous on [0, 1] and f is continuous on (1, 2]. However, f is discontinuous at
x = 1 on [0, 2].

Problem (3). Suppose a function f has a measurable domain and is continuous except at a finite
number of points. Prove thatf is measurable.

13
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Proof. Let B = {x : f(x) is not continuous}. Since B is finite, f is measurable on B and m(B) = 0.
Consider A = E \ B. Since f is continuous on A and A is measurable, by Proposition 3, f is
measurable on A. Thus f is measurable on A ∪B = (E \B) ∪B = E.

Problem (4). Suppose f is a real-valued function on R such that f−1(c) is measurable for each
number c. Show that f is not necessarily measurable.

Proof. Let W be the Vitali set. Let f be a function on W defined by f(x) = x. Then, f−1(x) = x
is measurable. However, the domain W is not measurable, and thus f is not measurable.

Problem (5). Suppose the function f is defined on a measurable set E and has the property that
{x ∈ E : f(x) > c} is measurable for each rational number c. Prove that f is measurable.

Proof. (Method I-Gatto)
Let c ∈ Q and r ∈ R. Note that

{x : f(x) > r} =
⋃
c>r

{x : f(x) > c}

Since the right hand side is a union of measurable sets, the union is measurable. Thus, the left
hand side is measurable. Therefore, f is measurable.

Proof. (Method II-Christina and Steve)
Let r ∈ R, and let cn be a sequence of rational numbers such that cn → r. Then,

{x ∈ E : f(x) > r} =
∞⋃
n=1

{x ∈ E : f(x) > cn}

and measurability of the right side implies measurability of the left side. Thus, f is measurable.

Problem (6). Let f be a function with measurable domain D. Show that f is measurable if and
only if the fuction g defined on R by g(x) = f(x) for x ∈ D and g(x) = 0 for x 6∈ D is measurable.

Proof. (Method I-Christina)
“⇒ ” Let f be measurable on D, and let g be defined by

g(x) =

{
f(x) if x ∈ D
0 if x 6∈ D

Then, g is measurable on D and. Consider g on R \D.

• If a ≥ 0, then {x ∈ R \D : g(x) > a} = ∅, which is measurable

• If a < 0, then {x ∈ R \D : g(x) > a} = R \D, which is measurable

Thus, g is measurable on R \D. Therefore, g is measurable on R = (R \D) ∪D.
“⇐ ” Assume g is measurable on R. Then, g is measurable on D ⊂ R. Since g = f on D, this

is equivalent to stating that f is measurable on D.

14
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Proof. (Method II-Gatto)
Since f is measurable, note that for α ≥ 0,

{x ∈ D : f(x) > α} = {x : g(x) > α},

and for α < 0,
{x : g(x) > α} = {x ∈ D : f(x) > α} ∪ {R \D}

all of which are measurable sets, and thus g is measurable on its domain.
Conversely, if g is measurable, the same equalities above hold, and thus f is measurable.

Problem (7). Let the function f be defined on a measurable set E. Show that f is measurable if
and only if for each Borel set A, f−1(A) is measurable.

Proof. “ ⇒ ” Consider A, the σ-algebra with the property that f−1(U) is measurable for each
U ∈ A. By Proposition 2, since f is measurable, f−1(O) is measurable for every open set O. Thus,
O ∈ A for every open set O. Therefore, Borel sets lie in A.

“⇐ ” Assume that for every Borel set A, f−1(A) is measurable. Since Borel sets contain every
open set, by Proposition 2, f is measurable.

Problem (8).

Proof.

Problem (9). Let {fn} be a sequence of measurable functions defined on a measurable set E.
Define E0 to be the set of points x ∈ E at which {fn(x)} converges. Prove that E0 is measurable.

Proof.

Problem (10). Suppose f and g are real-valued functions defined on all of R, f is measurable, and
g is continuous. Show that the composition f ◦ g is not necessarily measurable.

Proof. Let f = χE and W = ψ(E), where g = ψ−1, the Cantor-Lebesgue function defined in
Proposition 21 of chapter 2. The function ψ−1 is continuous and therefore is measurable. Compute:

(f ◦ g)−1(1) = g−1(f−1(1)) = g−1(E) = ψ(E) = W

but, by Propisition 21 of Chapter 2, W is a non-measurable set.

Problem (11). Let f be measurable and g one-to-one from R onto R which has a Lipschitz inverse.
Show that the composition f ◦ g is measurable.

Proof.

Problem (12). Let f be a bounded measurable function on E. Show that there are sequences of
simple functions on E, {φn} and {ψn}, sich that {φn} is decreasing and each of these sequences
converges to f uniformly on E.

Proof. (Christina’s proof)
Let n > 0. Then, by the Simple Approximation Lemma, for each n > 0 there are simple functions
φ 1
n

and ψ 1
n

such that φ 1
n
≤ f ≤ ψ 1

n
and ψ 1

n
− φ 1

n
< 1

n on E. Next, let

φ′1
n

= max
k>n

{
φ 1
n

}
15
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and
ψ′1
n

= max
k>n

{
ψ 1
n

}
.

Observe that φ′1
n

increases, while ψ′1
n

decreases. Furthermore, observe that

1

n
> f − φ 1

n
≥ f − φ′1

n

and
1

n
> ψ 1

n
− f ≥ ψ′1

n

− f

and thus

lim
n→∞

f − φ′1
n

<
1

n

and

lim
n→∞

ψ′1
n

− f < 1

n

independently of x, and thus the sequences
{
ψ′1
n

}
and

{
φ′1
n

}
converge to f uniformly.

Problem (13). A real-valued measurable function is said to be semisimple provided it takes only a
countable number of values. Let f be any measurable function on E. Show that there is a sequence
of semisimple functions {fn} on E that converges to f uniformly on E.

Proof. (Christina’s proof)
Let f be a measurable function on E. Consider a set Ej for every integer j, where Ej ={
x ∈ E : j−1

n ≤ f(x) < j
n

}
. Then, define a function

fn =
∑
j∈Z

j

n
χEj .

Since Z is countable, fn is a semisimple function. Consider the sequence of functions {fn} and let
ε > 0. Then, there is an N ∈ N such that 1

N < ε. Take n > N . Then,

|f − fn| <
1

n
≤ 1

N
< ε

and thus {fn} converges uniformly to f .

Proof. (Alexander’s proof)
Divide the real line into subintervals of length 2−n as follows: let Ik =

[
k−1
2n ,

k
2n

)
for k ∈ Z. Now,

let Ek = f−1(Ik), and let

fn =

∞∑
k=1

k − 1

2n
χEk .

Note that fn is semisimple. Furthermore, note that as n → ∞, fn → f uniformly, since for all
n > N , |f − fn| < 1

2n < ε.

Problem (14). Let f be a measurable function that is finite a.e. on E and m(E) <∞. For each
ε > 0, show that there is a measurable set F contained in E such that f is bounded on F and
m(E \ F ) < ε.

16
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Proof. Remember that f = f+ + f−. First, consider f+. Let N = {x ∈ E : f(x) = +∞}, and note
that m(N) = 0. Consider En = {x ∈ E : |f(x)| > n}. Then,

∞⋂
n=1

En = N.

Note that m(N) = lim∞n=1m(En) = lim∞n=1m ({x ∈ E : |f(x)| > n}) = 0. Then, given any ε > 0,
there is a set such that m (En) < ε.

Define a set Fn = {x ∈ E : |f(x)| ≤ n} = Ecn. Then, Fn is bounded, and

m(E \ Fn) = m(F cn) = m(En) < ε.

Proceed similarly to see that the inequality holds for f−.

Problem (15). Let f be a measurable function on E that is finite a.e. on E and m(E) <∞. Show
that for each ε > 0, there is a measurable set F contained in E and a sequence {φn} of simple
functions on E such that {φn} → f uniformly on F and m(E \ F ) < ε.

Proof. Define Fn the same as in the previous problem, Fn = {x ∈ E : |f(x)| ≤ n}. Then, as seen
in the previous exercise, m(E \Fn) < ε for any given ε whenever n > Nε. Furthermore, by exercise
12 in this section, since f is bounded on F there is a sequence {φn} of simple functions on E such
that {φn} → f .

Problem (16). Let I be a closed, bounded interval and E a measurable subset of I. Let ε > 0.
Show that there is a step function h on I and a measurable subset F of I for which

h = χE on F and m(I \ F ) < ε.

Proof. Without loss of generality, Let E ⊆ [0, 1] = I. Let O = {Oj}∞j=1 be an open disjoint covering
of E such that

∑∞
j=1 `(Oj) ≤ m(E)+ ε

2 . Let F = [0, 1]\ (O\E). Since F is a collection of intervals,
F is a measurable subset of [0, 1]. Furthermore, I = F ∪ (O \ E), thus

m(I) = m(F ∪ (O \ E))

m(I) = m(F ) +m(O \ E)

m(I)−m(F ) = m(O \ E) < ε

and thus m(I \ F ) < ε.

Problem (17). Let I be a closed, bounded interval and ψ a simple function defined on I. Let
ε > 0. Show that there is a step function h on I and a measurable subset F of I for which

h = ψ and m(I \ F ) < ε.

Proof. (Warning: this proof is from Gatto’s notes and is not clear)
By number 16, there is a step function hi(x) such that hi(x) = χEi(x) except on a set Bi = I \Fn,
where m(Bi) <

ε
N .

Note that Fn = [0, 1] \ ((O \ E) ∪ (E \ O))
Let h =

∑N
i=1 aihi(x) =

∑N
i=1 aiχEi(x) except at B =

⋃N
i=1Bi but m(B) ≤

∑N
i=1m(Bi) < ε.

Note that F = I \B, then I \ F = I ∩
(
(I ∩B)C

)C
= I ∩ (IC ∩B) = I ∩B = B.

Finally, m(I \ F ) = m(B) ≤ ε.
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Problem (18). Let I be a closed, bounded interval and f a bounded measurable function defined
on I. Let ε > 0. Show that there is a step function h on I and a measurable subset F of I for
which

|h− f | < ε on F and m(I \ F ) < ε.

Proof.

Problem (19). Show that the sum and product of two simple functions are simple, as are the max
and the min.

Proof. (Christina’s proof)
Let φ(x) and ψ(x) be simple functions on E. Then,

φ(x) =
n∑
k=1

akχEk , where Ek = {x ∈ E : φ(x) = ak}

ψ(x) =
m∑
j=1

bjχAj , where Aj = {x ∈ E : ψ(x) = bj}

Next, define new sets Bp,q = Ep ∩Aq and cp,q = ap + bq.Then,

φ(x) + ψ(x) =

p,q∑
j,k=1

ajbkχBjk

The max and min of two different simple functions must be simple, since they still will be taking
only a finite number of values.

Problem (20). Let A and B be any two sets. Show that

χA∩B = χA · χB
χA∪B = χA + χB − χA · χB
χAC = 1− χA.

Proof. (Alexander)
Note that

χA =

{
1 if x ∈ A
0 if x 6∈ A

and χA =

{
1 if x ∈ A
0 if x 6∈ A

and thus

χAχB =


1 if x ∈ A and x ∈ B
0 if x 6∈ A and x ∈ B
0 if x 6∈ A and x 6∈ B
0 if x 6∈ A and x 6∈ B

Or, more simply, χAχB = χA∩B. The other two properties follow similarly.

Problem (21). For a sequence {fn} of measurable functions with common domain E, show that
each of the following functions is measurable:

inf{fn}, sup{fn}, lim inf{fn}, lim sup{fn}

18
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Proof. (Alexander’s proof)
Note that for every c ∈ R,

inf{fn} = {x ∈ E : inf{fn} ≤ c} =

∞⋃
n=1

{x ∈ E : fn(x) ≤ c}

sup{fn} = {x ∈ C : sup{fn} ≥ c} =
∞⋂
n=1

{x ∈ E : fn(x) ≥ c}

The elements on the far right side of the equations are all measurable, and unions of measurable
sets are measurable, thus the inf and sup are measurable. Furthermore, observe that

lim
n→∞

inf{fn} = sup
n

inf
k≥n
{fk}

lim
n→∞

sup{fn} = inf
n

sup
k≥n
{fk}

and thus the lim sup and lim inf are measurable.

Problem (22). Let {fn} be an increasing sequence of continuous functions on [a, b] which converges
pointwise on [a, b] to the continuous function f on [a, b]. Show that the convergence is uniform on
[a, b].

Proof. (Proof by Christina, Jamie, Alexander)
Let ε > 0, and define En = {x ∈ [a, b] : f(x) − fn(x) < ε}. We want En to be open, so note that
f − fn(x) is continuous and thus En is open relative to [a, b].

Since fn → f pointwise, then there is an N ∈ N such that for all n > N , |f(x) − fn(x)| < ε.
Let n0 > N , and consider x ∈ En0 . Then, x ∈

⋃∞
n=1En. Thus, [a, b] ⊆

⋃∞
n=1En. In other words,

{En} is an open covering of [a, b].
Since {En} is an open covering of [a, b] and since [a, b] is compact, by Heine-Borel there is a finite

subcovering of [a, b]. Denote this subcovering {En1 , En2 , . . . , Enk}. Let N0 = max{n1, n2, . . . , nk}.
Let n ≥ N0 and x ∈ [a, b] ⊆ En1∪En2∪· · ·∪Enk . Thus, x ∈ Eni for some i. However, n > N0 > ni,
and fn converges pointwise, thus

|f(x)− fn(x)| < |f(x)− fni(x)| < ε

and thus we have uniform convergence.

Problem (23). Express a measurable function as the difference of nonnegative measurable func-
tions and thereby prove the general Simple Approximation Theorem based on the special case of a
nonnegative measurable function.

Proof. Remember that f = f+ − f−, where f+ = {max{f(x), 0}} and f− = {max{−f(x), 0}}.
Both f+ and f− are measurable and thus we have satisfied all of the needed contditions.

Problem (24). Let I be an interval and f : I → R be increasing. Show that f is measurable by
first showing that, for each number n, the strictly increasing function x 7→ f(x) + x

n is measurable,
and then taking pointwise limits.

Proof. (Christina)
Note that there is an x0 such that f(x0) + x0

n > α since f is increasing. Then, (x0, b] ⊆ {x ∈ I :
f(x) + x

n > α}, and thus f(x) + x
n is measurable on its domain. Therefore, we will consider the

sequence functions fn = f(x) + x
n . Then, fn → f , and all fn are measurable, thus f is measurable

by proposition 9.
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3 Chapter 4

Problem (9). Let E have measure zero. Show that if f is a bounded function on E, then f is
measurable and

∫
E f = 0.

Proof. Let f be a function, and consider the set {x ∈ E : f(x) > α}, where α ∈ R. But,
{x ∈ E : f(x) > α} ⊂ E. So, by monototonicity, m{x ∈ E : f(x) > α} ≤ m(E) = 0.

Now, consider a simple function ψ on E such that:∫
E
f = inf

f≤ψ

∫
E
ψ

Any simple function ψ =
∑n

i=1 aiχEi on E means Ei ⊂ E and thus
∫
E ψ = 0. Thus,∫

E
f = inf

f≤ψ

∫
E
ψ = 0.

Problem (10). Let f be a bounded measurable function on a set of finite measure E. For a
measurable subset A of E, show that

∫
A f =

∫
E f · χA.

Proof. Observe that
∫
E fχA =

∫
E\A fχA +

∫
A fχA. Note that

∫
E\A fχA = 0, since χ is zero in Ac.

(This is because for any Y , − 1
nχY ≤ 0 ≤ 1

nχY , thus
∫
− 1
nχY ≤

∫
0 ≤

∫
1
nχY ). All together, we see

that ∫
E
fχA =

∫
E\A

fχA +

∫
A
fχA =

∫
A
fχA =

∫
A
f

Problem (11). Show that the Bounded Convergence Theorem does not hold for the Riemann
integral.

Proof. Consider an enumeration of Q = {rn}∞n=1 in [0, 1], and define

fR(x) =

{
1 if x = ri, 1 ≤ i ≤ k
0 when x is odd

And note that

lim
k→∞

fR(x) = f(x) =

{
1 if x ∈ Q ∩ [0, 1]

0 whenx 6∈ Q ∩ [0, 1]

Now consider the Riemann upper sum. Note that any Riemann upper sum is 1, ie, U(f, P ) = 1,
and any lower sum is zero, ie, L(f, P ) = 0. Thus, R

∫
f does not exist, since the infimum of upper

sums and supremum of lower sums are not equal.

Problem (12). Let f be a bounded measurable function on a set of finite measure E. Assume g
is bounded and f = g a.e. on E.

Proof. Let N = {x ∈ E : f(x) 6= g(x)}. Note that m(N) = 0. Now, observe that∫
E

=

∫
E\N

f −
∫
N
f =

∫
E\N

g(x)dx+

∫
N
g(x)dx =

∫
E
gdx

since an integral over a set of measure zero is zero.
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Problem (13). Show that the Bounded Convergence Theorem does not hold if m(E) <∞ but we
drop the assumption that the sequence {|fn|} is uniformly bounded on E.

Proof. Let

fn(x) =


2n2x if x ∈

[
0, 1

2n

)
−2n2x+ 2n x ∈

[
1

2n ,
1
n

)
0 if x ∈

[
1
n , 1
)

More simply, this is a function with a peak of width 1
n and height n at 1

2n . For example, consider
the following graphs generated by Wolfram Alpha.

Figure 1: n = 3 Figure 2: n = 4

Computing the intergral by area of triangles, we see that
∫ 1

0 fn = 1
2

1
nn = 1

2 . Note, however,
that

lim
n→∞

fn(x) = 0

for all x ∈ [0, 1]. So,
∫ 1

0 fn = 1
2 , but

∫ 1
0 f =

∫ 1
0 0 = 0.

Problem (14). Show that Proposition 8 is a special case of the Bounded Convergence Theorem.

Theorem. (Bounded Convergence Theorem) Let {fn} be a sequence of measurable functions on
a set of finite measure E. Suppose {fn} is uniformly pointwise bounded on E, that is, there is a
number M ≥ 0 for which

|fn| ≤M on E for all n.

Then,

If {fn} → f pointwise on E, then lim
n→∞

∫
E
fn =

∫
E
f.

Proof. Assume that fn(x)→ f(x) uniformly. Say that |fN (x)| < B for all x. Uniform convergence
states that |fn(x)− f(x)| < ε for all n > N . Thus, |fN (x)− f(x)| < ε, and thus

ε < f(x)− fN (x) < ε

fN (x)− ε < f(x) < fN (x) + ε

and thus |f(x)| < B + ε. Now, observe

|fn − f + f − fN | < 2ε

by the triangle inequality, and thus

−2ε < fn(x)− fN (x) < 2ε

for all n > N and thus |fn| ≤ B + 2ε and thus the Bounded Convergence Theorem applies.
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Problem (15). Skip

Proof. Check continuity theorems of measure.

Problem (16). Let f be a nonnegative bounded measurable function on a set of finite measure E.
Assume

∫
E f = 0. Show that f = 0 a.e. on E.

Proof. It suffices to show that m({x ∈ E : f(x) > 1
n}) = 0 for all n ∈ N, because m({x : f(x) >

0}) =
⋃

1
n
>0{f(x) > 1

n}.
Consider

1

n
χ{x∈E:f(x)> 1

n
} ≤ f(x)χ{x∈E:f(x)> 1

n
}∫

E

1

n
χ{x∈E:f(x)> 1

n
} ≤

∫
E
f(x)χ{x∈E:f(x)> 1

n
} =

∫
{x∈E:f(x)> 1

n
}
f(x)dx

because ∫
E
f(x) ≥

∫
E\A

f

Problem (17). Let E be a set of measure zero and define f =∞ on E. Show that
∫
E f = 0.

Proof. (Alexander’s proof)
Define a function g on R by

g =

{
f if x ∈ E
0 if x ∈ EC

Since g is 0 a.e. on R, by Proposition 9,
∫
R g = 0. Then,

0 =

∫
R
g =

∫
E
g +

∫
EC

g =

∫
E
f +

∫
EC

0 =

∫
E
f + 0 =

∫
E
f.

Proof. (Gatto’s Proof) Note that f vanishes outside a set of finite measure. Thus,∫
E
f = sup

0≤h≤f

∫
E
h

where h is bounded on E and vanishes outside of a set of finite measure. Note that since h is
bounded, then 0 ≤ h < M for some M . Thus,∫

E
h ≤

∫
E
M = M ·m(E) = 0.

Problem (18). Show that the integral of a bounded measurable function of finite support is
properly defined.
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Proof. (Alexander’s proof)
We want to show that, even if m(E) =∞, defining the integral over E by∫

E
f =

∫
E0

f

where E0 has finite measure and f = 0 on E \ E0, then this integral is properly defined.
Note that by Proposition 9,

∫
E\E0

f = 0. Thus,∫
E
f =

∫
E\E0

f +

∫
E0

f = 0 +

∫
E0

f =

∫
E0

f.

Problem (19). For a number α, define

f(x) =

{
xα if 0 < x ≤ 1

0 if x = 0

Compute
∫ 1

0 f .

Proof. (Dr Gatto)
Begin with the case α < −1. Apply the monotone convergence theorem. Define:

fn =

{
xα, if 1

n ≤ x ≤ 1

0, if 0 ≤ x ≤ 1
n

Note that
∫
xα = lim

∫
fn = lim xα+1

α+1

∣∣∣1
1
n

→∞

If α = −1, then ∫ 1

0
xα = lim

n→∞

∫ 1

1/n
fn = lim

n→∞
lnn

∣∣∣1
1/n
→∞

If −1 < α, then ∫ 1

0
xα = lim

n→∞

∫ 1

1/n
xα = lim

n→∞

xα+1

α+ 1

∣∣∣∣1
1/n

=
1

α+ 1
> 0

Problem (20). Let {fn} be a sequence of non-negative measurable functions that converges to f
pointwise on E. Let M ≥ 0 such that

∫
E fn ≤ M for all n. Show that

∫
E f ≤ M . Verify that this

property is equivalent to the statement of Fatou’s lemma.

Proof. (Alexander’s proof)
By the definition of pointwise convergence, limn→∞ fn(x) = f(x) for all x ∈ E. Then, we know∫

limn→∞ fn(x) =
∫
f(x). Since this sequence of integrable functions converges pointwise every-

where on E to f , ∫
E
f(x) =

∫
E

lim
n→∞

fn(x) = lim
n→∞

∫
E
fn(x) ≤M.

Now we want to show that this property is equivalent to the statement of Fatou’s lemma. Dr.
Gatto says not to worry about this direction.
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Proof. (Dr. Gatto)
Apply Fatou’s Lemma and the Monotone Convergence Theorem to see that∫

E
f =

∫
E

lim
n→∞

fn ≤ lim inf
n→∞

∫
E
fn ≤M.

Conversely, to get Fatou... skip this portion.

Problem (21). Let the function f be nonnegative and integrable over E and ε > 0. Show there is
a simple function η on E that has finite support, 0 ≤ η ≤ f on E and

∫
E |f−η| < ε. If E is a closed,

bounded interval show there is a step function h on E that has finite support and
∫
E |f − h| < ε.

Proof. (WARNING: WHAT FOLLOWS IS A MESS. I RECOMMEND AGAINST READING IT.
DR GATTO SPENT AN HOUR ON THIS PROOF AND EVERYTHING WAS HORRIBLE)
Let hn = min{n, f(x)}. Then, the hn are increasing, and since f is finite almost everywhere,
limn→∞ hn = f(x) a.e. By monotone convergence,

lim
n→∞

∫
hn =

∫
f

which is equivalent to saying

lim
n→∞

∫
f − hn = 0

Thus, given ε
2 , there is an N0 such that

∫
f−hN0 <

ε
2 . Since hn is bounded and vanishes outside E,

there is a sequence a sequence φε of simple functions, where 0 ≤ φε ≤ hn, such that |hn(x)−φε(x)| <
ε

2m(E) .
Let η = φε. Then,

|f − η| = |f − hN0 + hN0 − η| ≤ |f − hN0 |+ |hN0 − η|

and integrating we see that∫
|f − η| =

∫
|f − hN0 + hN0 − η| ≤

∫
|f − hN0 |+

∫
|hN0 − η| ≤

ε

2
+

ε

2m(E)
m(E) = ε.

Now, I = E, where E is a closed, bounded interval. Then, there is a step function g such that
g = η except on I \ F , where m(I \ F ) < ε

2L . Now, since η ≤ N0 and g ≤ N0,∫
E
|f − g| ≤

∫
E
|f − η|+

∫
E
|η − g| ≤ ε

2

≤
∫
E
|f − η|+

∫
I\F
|η − g|+

∫
F
|η − g|

=

∫
E
|f − η|+

∫
I\F
|η − g|

≤ ε

Let η =
∑
aiχEi , where hj − χEi approximates each characteristic, but h ≤ 1, except I \ F ,

m(I \ F ) ≤ ε
3` .

We will approximate everything by doing the following: L =
∑`

i=1 |ai|, so ajhj = ajχEj . So,∑
ajhj ≤ L and

∑
ajχEj ≤ L.

Everything in this writeup is wrong. Get notes from Christina.
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Problem (22). Let {fn} be a sequence of non-negative measurable functions on R that converges
pointwise on R to f and f be integrable over R. Show that if∫

R
f = lim

n→∞

∫
R
fn, then

∫
E
f = lim

n→∞

∫
E
fn for any measurable set E

Proof. Since fn are nonnegative, we apply Fatou. We know that∫
E
f ≤ lim inf

∫
E
fn.

The same is true for the complement:∫
R
f −

∫
E
f =

∫
R\E

f

≤ lim inf

∫
R\E

fn

≤ lim inf

(∫
R
fn −

∫
E
fn

)
≤
∫
R
f − lim sup

∫
E
fn

Therefore,

lim sup
n→∞

∫
E
fn ≤

∫
E
f

Combining all of this information, we observe that∫
E
f ≤ lim inf

∫
E
fn ≤ lim sup

n→∞

∫
E
fn ≤

∫
E
f

and thus ∫
E
f = lim

n→∞

∫
E
fn.

Problem (23). Let {an} be a sequence of non-negative real numbers. Define the functions f on
E = [1,∞) by setting f(x) = an if n ≤ x < n+ 1. Show that

∫
E f =

∑∞
n=1 an.

Proof. In order to apply the Monotone Convergence Theorem, we construct the following sequence
of partial sums:

Sj =

{
f(x), if 1 ≤ x < j

0, if x ≥ j
Then, Sj is an increasing sequence of functions that converges pointwise to f . Therefore, we can
apply the Monotone Convergence Theorem. Also note that∫

E
Sj =

∫
[1,j)

Sj +

∫
[j,∞)

SJ =

∫
[1,j)

Sj =

j∑
n=1

an ·m ([n, n+ 1)) =

j∑
n=1

an

Combining all of this information together, we see that∫
E
f = lim

j→∞

∫
E
Sj = lim

j→∞

j∑
n=1

an =

∞∑
n=1

an.
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Problem (24). Let f be a non-negative measurable function on E.

1. Show there is an increasing sequence {φn} of non-negative simple functions on E, each of
finite support, which converges pointwise on E to f .

2. Show that
∫
E f = sup

{∫
E φ : φ simple, of finite support, and 0 ≤ φ ≤ f on E

}
.

Proof. 1. Define

Ej,k =

{
x :

1

2k
(j − 1) ≤ f(x) <

1

2k
j

}
, where 1 ≤ j ≤ 4k, and

E∗k =
{
x : f(x) > 2k

}
Use this to construct a sequence φk, where

φk =

4k∑
j=1

1

2k
(j − 1)χEj,k + 2kχE∗

k

This is an increasing sequence of non-negative simple functions on E which converges point-
wise to f . To ensure finite support, take

ψk = χ[−k,k] · φk.

2. Since {φk} are increasing, we will apply the Monotone Convergence Theorem:∫
E
f = lim

k→∞

∫
E
φk ≤ sup

φ≤f

∫
E
φ

Furthermore, since f ≥ φ ≥ 0, ∫
E
f ≥ sup

φ≤f

∫
E
φ

and therefore ∫
E
f = sup

φ≤f

∫
E
φ.

Problem (25). Let {fn} be a sequence of nonnegative measurable functions on E that converges
pointwise on E to f . Suppose fn ≤ f on E for each n. Show that

lim
n→∞

∫
E
fn =

∫
E
f

Proof. (Liz’s proof)
By Fatou’s lemma,

∫
E f ≤ lim infn→∞

∫
E fn.

On the other hand, since fn ≤ f for each n, then lim supn→∞
∫
E fn ≤

∫
E f . Then,

∫
E f =

limn→∞
∫
E fn.
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Proof. (Gatto’s proof) Take gk(x) = infn≥k {fn(x)}, lim gk(x) = f(x). Then, by Fatou,∫
E
f ≤ lim inf

∫
fk

Next, consider f − fn → 0 a.e. Also, fn ≤ f and thus f − fn is positive, so we can use Fatou
again. Then, ∫

0 ≤ lim
n→∞

inf

∫
(f − fn)

and thus

0 ≤
∫
f − lim

n→∞
sup

∫
fn

implying that ∫
f ≥ lim

n→∞
sup

∫
fn.

Problem (26). Show that the Monotone Convergence Theorem may not hold for decreasing se-
quences of functions.

Proof. (****ON TEST PROBABLY****)
Consider a set E = [1,∞), and define a sequence fn = χ[n,∞). Observe that

∫
E fn =

∫
E χ[n,∞) =∞.

On the other hand,
∫
E f =

∫
E limn→∞ χ[n,∞) =

∫
E 0 = 0.

Problem (27). Prove the following generalization of Fatou’s Lemma: If {fn} is a sequence of
nonnegative measurable functions on E, then∫

E
lim inf fn ≤ lim inf

∫
E
fn.

Proof. (Gatto’s Proof)
Take gk(x) = infn≥k{fn}. Now,

lim
k→∞

gk(x) = g(x) = lim
n→∞

inf{fn(x)}

so we can apply Fatou. ∫
lim gk ≤ lim

k→∞
inf

∫
gk ≤ lim inf

∫
fk

and thus ∫
lim inf{fk} ≤ lim inf

∫
fk.
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