Selected problems & solutions to Royden.

# 1 Chapter 2

**Problem** (1). Prove that if A and B are two sets in  $\mathcal{A}$  with  $A \subseteq B$ , then  $m(A) \leq m(B)$ . This property is called monotonicity.

*Proof.* If  $m(B) = \infty$ , then clearly the inequality holds true. Assume  $m(B) < \infty$  and write  $B = A \cup (B \setminus A)$ , where  $A \cap (B \setminus A) = \emptyset$ . Then, by  $\sigma$ -additivity,

$$m(B) = m(A \cup (B \setminus A)) = m(A) + m(B \setminus A)$$

thus

$$m(B) - m(A) = m(B \setminus A) \ge 0$$

which implies that

$$m(B) \ge m(A).$$

**Problem** (2). Prove that if there is a set A in the collection  $\mathcal{A}$  for which  $m(A) < \infty$ , then  $m(\emptyset) = 0$ . *Proof.* Observe that  $A = \emptyset \cup A$ , where  $\emptyset \cap A = \emptyset$ . Thus, by  $\sigma$ -additivity,

$$m(A) = m(A \cup \emptyset) = m(A) + m(\emptyset)$$

and since m(A) is finite, we can subtract to conclude that

$$0 = m(\emptyset).$$

**Problem** (3). Let  $\{E_k\}_{k=1}^{\infty}$  be a countable collection of sets in  $\mathcal{A}$ . Prove that  $m(\bigcup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} m(E_k)$ .

*Proof.* Let  $\{E_k\}_{k=1}^{\infty}$  be a countable collection of sets in  $\mathcal{A}$ , and define  $\{B_k\}_{k=1}^{\infty}$  as follows:

$$B_{1} = E_{1}$$

$$B_{2} = E_{2} \setminus B_{1}$$

$$\vdots$$

$$B_{n} = E_{n} \setminus \left(\bigcup_{j=1}^{n-1} E_{j}\right)$$

$$\vdots$$

Clearly,  $\bigcup_{k=1}^{\infty} B_k \subseteq \bigcup_{k=1}^{\infty} E_k$ .

On the other hand, let  $x \in \bigcup_{k=1}^{\infty} E_k$  and let  $k_0$  be the first  $k \in \mathbb{Z}$  such that  $x \in E_{k_0}$ . Then,  $x \in B_{k_0}$ , and thus  $x \in \bigcup_{k=1}^{\infty} B_k$ . Therefore,  $\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} B_k$ . Then, by  $\sigma$ -additivity,

$$m\left(\bigcup_{k=1}^{\infty} E_k\right) = m\left(\bigcup_{k=1}^{\infty} B_k\right) = \sum_{k=1}^{\infty} m(B_k)$$

and by monotonicity,

$$\sum_{k=1}^{\infty} m(B_k) \le \sum_{k=1}^{\infty} m(E_k)$$

**Problem** (4). The set function, c, defined on all subsets of  $\mathbb{R}$  is defined as follows:

$$c(E) = \begin{cases} \infty, & E \text{ is finite} \\ |E|, & E \text{ is finite} \\ 0, & E = \emptyset \end{cases}$$

Show that c is countably additive and translation invariant.

#### *Proof.* (Alexander's proof)

First we will show that c is countably additive over countable disjoint unions of sets. Let  $\{E_k\}_{k=1}^{\infty}$  be a countably infinite collection of disjoint subsets of  $\mathbb{R}$ . If  $E_i$  is infinite for some i, then  $\bigcup_{k=1}^{\infty} E_k$  is an infinite set, and

$$c\left(\bigcup_{k=1}^{\infty} E_k\right) = \infty = \sum_{k=1}^{\infty} c(E_k).$$

Now assume that  $E_i$  is not infinite for any *i*. Since the subsets are disjoint,

$$\sum_{k=1}^{\infty} c(E_k) = \sum_{k=1}^{\infty} |E_k| = \left| \bigcup_{k=1}^{\infty} E_k \right| = c\left( \bigcup_{k=1}^{\infty} E_k \right)$$

and thus c is countably additive.

Next, we will show that c is translation invariant. First, consider the case where E is infinite. Then  $c(E) = \infty$  and  $c(E+y) = \infty$ . If E is empty, then E+y is empty, and c(E) = 0 = c(E+y). If E is finite and nonempty, then we can say |E| = n, and  $E = \{e_1, e_2, \ldots, e_n\}$  for  $e_i \in \mathbb{R}$ . Thus,  $E+y = \{e_1 + y, e_2 + y, \ldots, e_n + y\}$  and |E+y| = y. Thus, c(E) = c(E+y), and c is translation invariant.

**Problem** (5). Prove the interval [0, 1] is uncountable.

*Proof.* Assume to the contrary [0,1] is countable. Then, since the measure of a countable set is zero,  $m^*([0,1]) = 0$ . However,  $m^*([0,1]) = \ell([0,1]) = 1 - 0 = 1$ , a contradiction, since  $1 \neq 0$ . Thus, [0,1] is not countable.

**Problem** (6). Let A be the set of irrational numbers in [0, 1]. Prove that  $m^*(A) = 1$ .

Proof. Observe that  $[0,1] = ([0,1] \cap A) \cup ([0,1] \cap \mathbb{Q}) = A \cup ([0,1] \cap \mathbb{Q})$ . Since  $A \cap ([0,1] \cap \mathbb{Q}) = \emptyset$ , by  $\sigma$ -additivity,

$$m^*([0,1]) = m^*(A \cup ([0,1] \cap \mathbb{Q}))$$
  
= m^\*(A) + m^\*([0,1] \cap \mathbb{Q})  
= m^\*(A) + 0

and thus we see that  $m^*(A) = m^*([0,1]) = 1$ .

**Problem** (7). A set of real numbers is said to be a  $G_{\delta}$  set provided it is the intersection of a countable collection of open sets. Show that for any bounded set E, there is a  $G_{\delta}$  set G such that

$$E \subseteq G$$
 and  $m^*(G) = m^*(E)$ .

*Proof.* By the definition of Lebesgue outer measure,

$$m^*(E) = \text{glb}\left\{\sum_{k=1}^{\infty} \ell(I_k) : E \subseteq \bigcup_{k=1}^{\infty} I_k \text{ and } I_k \text{ open, nonempty}\right\}.$$

By definition of glb, there is an open cover of E,  $\{I_{j,n}\}_{j=1}^{\infty}$ , for each  $\frac{1}{n}$ , where

$$\sum_{k=1}^{\infty} \ell(I_{k,n}) \le m^*(E) + \frac{1}{n}.$$

Let  $\mathcal{O}_n = \bigcup_{j=1}^{\infty} I_{j,n}$ , where  $\mathcal{O}_n$  is an open set covering E for each n. Then  $E \subseteq \bigcap_{n=1}^{\infty} \mathcal{O}_n$ . Let  $G = \bigcap_{n=1}^{\infty} \mathcal{O}_n$ . Note that G is a  $G_{\delta}$  set and  $E \subseteq G$ .

By monotonicity,  $m^*(E) \leq m^*(G)$ . Also, since  $\mathcal{O}_n \supseteq G$ , by monotonicity,

$$m^*(E) \le m^*(G) \le m^*(\mathcal{O}_n).$$

Note that one covering of  $\mathcal{O}_n$  is is  $\{I_{k,n}\}_{k=1}^{\infty}$ , ie,  $\mathcal{O}_n$  covers itself. Since  $m^*(\mathcal{O}_n)$  is the glb of all open covers of  $\mathcal{O}_n$ ,

$$m^*(\mathcal{O}_n) \le \sum_{j=1}^{\infty} \ell(I_{j,n}) \le m^*(E) + \frac{1}{n}$$

Thus,  $m^*(E) \le m^*(G) \le m^*(E) + \frac{1}{n}$ . Thus,  $m^*(E) = m^*(G)$ .

**Problem** (8). Let *B* be the set of rational numbers in [0, 1] and let  $\{I_k\}_{k=1}^{\infty}$  be a finite collection of open intervals that covers *B*. Prove that  $\sum_{k=1}^{\infty} m^*(I_k) \ge 1$ .

*Proof.* (Alexander's proof)

Since  $\{I_k\}_{k=1}^{\infty}$  is a countable collection of open intervals, we can write out the intervals ordered by left endpoint, i.e., write them as  $(a_1, b_1), (a_2, b_2), \ldots, (a_n, b_n)$ , where  $a_1 \leq a_2 \leq \cdots \leq a_n$ . Note that  $a_j \leq b_{j-1}$  for all  $1 \leq j \leq n$ , because otherwise there is an interval  $(b_{j-1}, a_j) \not\subseteq \bigcup_{k=1}^{\infty} I_k$ , a contradiction (since this interval contains rational numbers). We know that  $0 \in (a_1, b_1)$  and  $1 \in (a_n, b_n)$ , and thus  $a_1 \leq 0$  and  $b_n \geq 1$ . Thus,

$$\sum_{k=1}^{\infty} m^*(I_k) = \sum_{k=1}^{\infty} \ell(I_k) = \sum_{k=1}^{\infty} \ell((a_k, b_k))$$

where

$$\sum_{k=1}^{\infty} \ell((a_k, b_k)) = (b_n - a_n) + (b_{n-1} - a_{n-1}) + \dots + (b_1 - a_1)$$
  
=  $b_n + (b_{n-1} - a_n) + (b_{n-2} - a_{n-1}) + \dots + (b_1 - a_2) - a_1$   
 $\ge b_n - a_1$   
 $\ge 1$ 

Thus,  $\sum_{k=1}^{\infty} m^*(I_k) \ge 1$ .

**Problem** (9). Prove that if  $m^*(A) = 0$ , then  $m^*(A \cup B) = m^*(B)$ .

Proof. If  $m^*(B) = \infty$ , then the inequality holds. Assume  $m^*(B) < \infty$ . Generally,  $m^*(B) \le m^*(A \cup B)$ . Furthermore, by  $\sigma$ -additivity, we know that  $m^*(A \cup B) \le m^*(A) + m^*(B) = 0 + m^*(B)$ . Thus  $m^*(B) = m^*(A \cup B)$ .

**Problem** (10). Let A and B be bounded sets for which there is an  $\alpha > 0$  such that  $|a - b| \ge \alpha$  for all  $a \in A, b \in B$ . Prove that  $m^*(A \cup B) = m^*(A) + m^*(B)$ .

Proof. Let  $\{I_j\}_{j=1}^{\infty}$  be a covering of  $A \cup B$  with open intervals  $\ell(I_j) < \frac{\alpha}{2}$  and  $\sum_{j=1}^{\infty} \ell(I_j) \leq m^*(A \cup B) + \epsilon$ . Note that if  $I_j \cap A \neq \emptyset$  then  $I_j \cap B = \emptyset$ . Thus, we can split the intervals into a covering of A and a covering of B. Say  $\{I_j^A\}_{j=1}^{\infty}$  covers A, where  $I_j^A \cap A \neq \emptyset$  for all j, and  $\{I_j^B\}_{j=1}^{\infty}$  covers B, where  $I_j^B \cap B \neq \emptyset$  for all j.

Now, observe the outer measure:

$$m^*(A \cup B) + \epsilon \ge \sum_{j=1}^{\infty} \ell(I_j) \ge \sum_{j=1}^{\infty} \ell(I_j^A) + \sum_{j=1}^{\infty} \ell(I_j^B) \ge m^*(A) + m^*(B).$$

Since by subadditivity we know that  $m^*(A) + m^*(B) \ge m^*(A \cup B)$ , then

$$m^{*}(A) + m^{*}(B) = m^{*}(A \cup B).$$

**Problem** (11). Prove that if a  $\sigma$ -algebra of subsets of  $\mathbb{R}$  contains intervals of the form  $(a, \infty)$ , then it contains all intervals.

*Proof.* Let  $\mathcal{A}$  be a  $\sigma$ -algebra which contains all real intervals of the form  $(a, \infty)$ . Then, for a < b,

• 
$$(-\infty, a] = (a, \infty)^C \in \mathcal{A}$$

• 
$$(-\infty, a) = \bigcup_{k=1}^{\infty} (-\infty, a - \frac{1}{k}] \in \mathcal{A}$$

- $[a,\infty) = (-\infty,a)^C \in \mathcal{A}$
- $(-\infty, b] \cap [a, \infty) = [a, b] \in \mathcal{A}$
- $(-\infty, b) \cap (a, \infty) = (a, b) \in \mathcal{A}$
- $(-\infty, b) \cap [a, \infty) = [a, b) \in \mathcal{A}$
- $(-\infty, b] \cap (a, \infty) = (a, b] \in \mathcal{A}$
- $(-\infty, a] \cap [a, \infty) = \{a\} \in \mathcal{A}$
- $(-\infty, a] \cap [b, \infty) = \emptyset \in \mathcal{A}$
- $\bigcup_{k=1}^{\infty}(-k,k) = \mathbb{R} \in \mathcal{A}$

Thus,  $\mathcal{A}$  contains all intervals.

**Problem** (12). Every interval is a Borel set.

*Proof.* The collection  $\mathcal{B}$  of Borel sets of  $\mathbb{R}$  is the smallest  $\sigma$ -algebra of sets of  $\mathbb{R}$  containing all open sets in  $\mathbb{R}$ . Since every open set is in  $\mathcal{B}$ , then every set of real numbers of the form  $(a, \infty)$  is in  $\mathcal{B}$ . Thus, by the previous exercise, every interval is a Borel set.  $\Box$ 

**Problem** (13). Show that (i) the translate of an  $F_{\sigma}$  set is also  $F_{\sigma}$ , and (ii) the translate of a  $G_{\delta}$  set is also  $G_{\delta}$ , and (iii) the translate of a set of measure zero is also measure zero.

*Proof.* (i) Let F be an  $F_{\sigma}$  set. Then, F is a countable union of closed sets. Say  $F = \bigcup_{k=1}^{\infty} F_k$ , where  $F_k$  is closed for all k. Then,

$$F + y = (\bigcup_{k=1}^{\infty} F_k) + y = \bigcup_{k=1}^{\infty} (F_k + y)$$

where  $F_k + y$  is closed for all k. Thus, F + y is an  $F_{\sigma}$  set.

(*ii*) Let G be a  $G_{\delta}$  set. Then,  $G = \bigcap_{k=1}^{\infty} \mathcal{O}_k$  where  $\mathcal{O}_k$  is open for all k. Then,

$$G + y = \left(\bigcap_{k=1}^{\infty} \mathcal{O}_k\right) + y = \bigcap_{k=1}^{\infty} (\mathcal{O}_k + y)$$

where  $\mathcal{O}_k + y$  is open for all k. Thus, G + y is  $G_{\delta}$ .

(*iii*) Suppose E is a set of measure zero, ie,  $m^*(E) = 0$ . Let  $\{I_j\}_{j=1}^{\infty}$  be an open covering of E with  $\sum_{j=1}^{\infty} \ell(I_j) < \epsilon$  for each  $\epsilon > 0$ . Then,

$$E + y \subset \left(\bigcup_{j=1}^{\infty} I_j\right) + y = \bigcup_{j=1}^{\infty} (I_j + y).$$

Thus,

$$m^*(E+y) \le \sum_{j=1}^{\infty} \ell(I_j+y) = \sum_{j=1}^{\infty} \ell(I_j) < \epsilon$$

and therefore  $m^*(E+y) = 0$ .

**Problem** (14). If E has positive outer measure, then there is a bounded subset of E that also has positive outer measure.

*Proof.* (Alexander's proof) If E is bounded, then we are done. Assume E is not bounded. Then,

$$E = \bigcup_{n \in \mathbb{Z}} E \cap [n, n+1].$$

By  $\sigma$ -subadditivity,

$$0 < m^*(E) = m^*\left(\bigcup_{n \in \mathbb{Z}} E \cap [n, n+1]\right) \le \sum_{n \in \mathbb{Z}} m^*(E \cap [n, n+1])$$

Thus, there is at least one  $m \in \mathbb{Z}$  such that  $m^*(E \cap [m, m+1]) > 0$ . Therefore,  $E \cap [m, m+1]$  is a bounded subset of E with positive outer measure.

**Problem** (15). Show that if E has finite measure and  $\epsilon > 0$ , then E is the disjoint union of a finite number of measurable sets, each of which has measure at most  $\epsilon$ .

*Proof.* (Alexander's proof)

Assume a set A has finite outer measure,  $m^*(A) < \infty$ . Let  $E_n = (-n, n] \cap A$ . Note that

$$m^*(A) = \lim_{n \to \infty} m^*((-n, n] \cap A) = \lim_{n \to \infty} m^*(E_n)$$

and thus

$$|m^*(A) - m^*(E_n)| < \epsilon$$

which implies by the incision property that

$$m^*(A \setminus E_n) \le |m^*(A) - m^*(E_n)| < \epsilon.$$

Thus, we can consider the set  $E_n = E$ , a bounded set of finite measure. Say that glb(E) = x and lub(E) = y, and let n be the integer such that  $y \in [x + (n-1)\epsilon, x + n\epsilon)$ . Then, the (measurable) intervals

$$I_1 = [x, x + \epsilon)$$

$$I_2 = [x + \epsilon, x + 2\epsilon)$$

$$\vdots$$

$$I_{n-1} = [x + (n-2)\epsilon, x + (n-1)\epsilon)$$

$$I_n = [x + (n-1)\epsilon, x + n\epsilon)$$

is a covering of E, where  $I_j \cap I_k = \emptyset$  and  $m^*(I_k) = \epsilon$  for all j, k. Now, define

$$J_1 = E \cap I_1$$
$$J_2 = E \cap I_2$$
$$\vdots$$
$$J_n = E \cap I_n$$

Since  $I_j \cap I_k = \emptyset$ , then  $J_j \cap J_k = \emptyset$  for all j, k. Furthermore,  $0 \le m^*(J_k) \le \epsilon$ , and

$$\bigcup_{k=1}^{n} J_{k} = \bigcup_{k=1}^{n} E \cap I_{k} = (E \cap I_{1}) \cup (E \cap I_{2}) \cup \dots \cup (E \cap I_{n}) = E \cap (\bigcup_{k=1}^{n} I_{k}) = E,$$

since  $E \subseteq \bigcup_{k=1}^{n} I_k$ . Thus, we see that E is the disjoint union of a finite number of measurable sets, each of which has measure at most  $\epsilon$ .

**Problem** (16). Complete the proof to Theorem 11 by showing that measurablility is equivalent to (iii) and also equivalent to (iv).

- (*iii*): For each  $\epsilon > 0$ , there is a closed set F contained in E for which  $m^*(E \setminus F) < \epsilon$ .
- (*iv*): There is an  $F_{\sigma}$  set F contained in E for which  $m^*(E \setminus F) = 0$ .

*Proof.* (*iii*): Since E is measurable, then  $E^c$  is also measurable, and by Theorem 11 part (*ii*), there is a  $G_{\delta}$  set G containing  $E^c$  for which  $m^*(G \setminus E^c) = 0 < \epsilon$ . This implies that  $F = G^c \subset E$  and F is closed. Furthermore,  $E \setminus F = E \cap G = G \cap E = G \setminus E^c$ . Therefore,  $m^*(E \setminus F) = m^*(G \setminus E^c) < \epsilon$ .

(*iv*): Given any  $\epsilon > 0$ , there is an  $F_n \subset E$  such that  $m^*(E \setminus F_n) < \epsilon$  by party (*iii*). Set  $F_{\sigma} = \bigcup_{n=1}^{\infty} F_n$ . Then,

$$m^*(E \setminus F_{\sigma}) = m^*\left(E \setminus \left(\bigcup_{n=1}^{\infty} F_n\right)\right) \le m^*(E \setminus F_n) < \epsilon.$$

Thus, since  $\epsilon$  can be arbitrarily small,  $m^*(E \setminus F_{\sigma}) = 0$ .

Lastly, we want to show that (iv) implies measurablility. So, assume there is an  $F_{\sigma}$  set F contained in E for which  $m^*(E \setminus F) = 0$ . Note that  $E = F \cup (E \setminus F)$ . We know that  $E \setminus F$  is measurable since any set with outer measure zero is measurable, and F is  $F_{\sigma}$  and thus measurable. Because countable unions of measurable sets is measurable, the entire right hand side of the equation is measurable. Thus, E is measurable. 

**Problem** (17). Show that a set E is measurable if and only if for each  $\epsilon > 0$ , there is a closed set F and open set  $\mathcal{O}$  for which  $F \subseteq \mathcal{O} \subseteq E$  and  $m^*(\mathcal{O} \setminus F) < \epsilon$ .

*Proof.* " $\Rightarrow$ " Assume E is measurable. Then by Theorem 11, there is a closed set  $F \subseteq E$  such that  $m^*(E \setminus F) < \frac{\epsilon}{2}$  and an open set  $\mathcal{O} \supseteq E$  such that  $m^*(\mathcal{O} \setminus E) < \frac{\epsilon}{2}$ . Furthermore,

$$m^*(\mathcal{O} \setminus F) = m^*((E \setminus F) \cup (\mathcal{O} \setminus E)) = m^*(E \setminus F) + m^*(\mathcal{O} \setminus E) = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

"  $\Leftarrow$  " Conversely, assume  $m^*(\mathcal{O} \setminus F) < \epsilon$ . Since  $E \setminus F \subset \mathcal{O} \setminus F$ , mononicity implies that  $m^*(E \setminus F) < m^*(\mathcal{O} \setminus F) < \epsilon$ . Thus, by Theorem 11, E is measurable. 

**Problem** (18). Let  $m(E) < \infty$ . Show that there is an  $F_{\sigma}$  set F and  $G_{\delta}$  set G such that  $F \subseteq E \subseteq G$ and  $m^*(F) = m^*(E) = m^*(G)$ .

*Proof.* Assume E has finite measure. Then, by Theorem 11, there is an  $F_{\sigma}$  set F such that  $F \subseteq E$ and  $m^*(E \setminus F) = 0$  and a  $G_{\delta}$  set G such that  $E \subseteq G$  and  $m^*(G \setminus E) = 0$ .

Since E is measurable, we can apply the excision property to conclude that

$$m^*(E \setminus F) = m^*(E) - m^*(F) = 0$$
 and  $m^*(G \setminus E) = m^*(G) - m^*(E) = 0$ 

and thus

$$m^{*}(E) = m^{*}(F)$$
 and  $m^{*}(G) = m^{*}(E)$ .

**Problem** (19<sup>\*</sup>). Assume E has finite outer measure. Show that if E is not measurable, then there is an open set  $\mathcal{O}$  containing E that has finite outer measure and for which

$$m^*(\mathcal{O} \setminus E) > m^*(\mathcal{O}) - m^*(E).$$

*Proof.* Assume E is not measurable and assume to the contrary that for all open sets  $\mathcal{O}$  containing  $E, m^*(\mathcal{O} \setminus E) \leq m^*(\mathcal{O}) - m^*(E)$ . By the definition of outer measure, there is a collection of intervals  $\{I_j\}_{j=1}^{\infty} \text{ such that } \sum_{j=1}^{\infty} \ell(I_j) \leq m^*(E) + \epsilon.$ Consider  $\mathcal{O} = \bigcup_{j=1}^{\infty} I_j.$  Then,

$$m^*(\mathcal{O}) \le \sum_{j=1}^{\infty} \ell(I_j) \le m^*(E) + \epsilon.$$

Then,  $m^*(\mathcal{O}) - m^*(E) < \epsilon$ , which implies by our contradictory assumption that  $m^*(\mathcal{O} \setminus E) < \epsilon$ . Since  $\epsilon$  is arbitrary, this implies that E is measurable by Theorem 11, a contradiction. 

**Problem** (20). Let E have finite outer measure. Show that E is measurable if and only if for each open, bounded interval (a, b),

$$b - a = m^*((a, b) \cap E) + m^*((a, b) \setminus E)$$

*Proof.* " $\Rightarrow$ " Assume E is measurable and consider the open, bounded interval (a, b). Then,

$$b - a = m^*((a, b)) = m^*((a, b) \cap E) + m^*((a, b) \setminus E)).$$

"  $\Leftarrow$  " Conversely, let  $b - a = m^*((a, b) \cap E) + m^*((a, b) \setminus E)$ . Note that

$$m^*(E) = \operatorname{glb}\left\{\sum_{k=1}^{\infty} \ell(I_k) : \bigcup_{k=1}^{\infty} I_k \supseteq E\right\}.$$

Let  $\epsilon > 0$ . There exists a collection of intervals  $\{I_k\}_{k=1}^{\infty}$  such that  $\sum_{k=1}^{\infty} \ell(I_k) \leq m^*(E) + \epsilon$ . Denote each  $I_k = (a_k, b_k)$ , and let  $\mathcal{O} = \bigcup_{k=1}^{\infty} (a_k, b_k)$ . Then,

$$\sum_{k=1}^{\infty} \ell((a_k, b_k)) = \sum_{k=1}^{\infty} [m^*((a_k, b_k) \cap E) + m^*((a_k, b_k) \cap E^c)] \le m^*(E) + \epsilon.$$

Therefore,

$$m^*(\mathcal{O} \cap E) + m^*(\mathcal{O} \cap E^c) \le \sum_{k=1}^{\infty} m^*((a_k, b_k) \cap E) + \sum_{k=1}^{\infty} m^*((a_k, b_k) \cap E^c) < m^*(E) + \epsilon.$$

Since E is finite,

$$m^{*}(\mathcal{O} \cap E) + m^{*}(\mathcal{O} \cap E^{c}) < m^{*}(E) + \epsilon$$
$$m^{*}(E) + m^{*}(\mathcal{O} \setminus E) < m^{*}(E) + \epsilon$$
$$m^{*}(\mathcal{O} \setminus E) < \epsilon$$

and thus E is measurable by Theorem 11.

**Problem** (21). Use property (ii) of Theorem 11 as the primitive definition of a measurable set and prove that the union of two measurable sets is measurable. Then do the same with property (iv).

*Proof.* Let  $E_1, E_2$  be measurable sets. Let  $G_1, G_2$  be  $G_\delta$  sets such that  $G_1 \supset E_1$  and  $G_2 \supset E_2$ , where  $m^*(G_1 \setminus E_1) = 0$  and  $m^*(G_2 \setminus E_2) = 0$ .

Note that  $(G_1 \cup G_2) \setminus (E_1 \cup E_2) = (G_1 \setminus (E_1 \cup E_2)) \cup (G_2 \setminus (E_1 \cup E_2))$ . Thus,

$$m^*((G_1 \cup G_2) \setminus (E_1 \cup E_2)) = m^*((G_1 \setminus (E_1 \cup E_2)) \cup (G_2 \setminus (E_1 \cup E_2)))$$
  

$$\leq m^*((G_1 \setminus (E_1 \cup E_2))) + m^*((G_2 \setminus (E_1 \cup E_2)))$$
  

$$\leq m^*(G_1 \setminus E_1) + m^*(G_2 \setminus E_2)$$
  

$$< 0 + 0 = 0$$

and thus  $m^*(E_1 \cup E_2) = 0$ .

Now, for  $E_1$  and  $E_2$  measurable, by property (iv) there are  $F_{\sigma}$  sets  $F_1$  and  $F_2$ , where  $F_1 \subset E_1$ and  $F_2 \subset E_2$ , such that  $m^*(E_1 \setminus F_1) = 0$  and  $m^*(E_2 \setminus F_2) = 0$ . Note that  $(E_1 \cup E_2) \setminus (F_1 \cup F_2) \subseteq (E_1 \setminus F_1) \cup (E_1 \setminus F_2)$ . Therefore,

$$m^*((E_1 \cup E_2) \setminus (F_1 \cup F_2)) \le m^*(E_1 \setminus F_1) + m^*(E_1 \setminus F_2)$$
  
 $\le 0 + 0 = 0$ 

Thus,  $E_1 \cup E_2$  is measurable.

**Problem** (22). For any set A, define  $m^{**}(A) \in [0, \infty]$  by  $m^{**}(A) = \inf\{m^*(\mathcal{O}) | \mathcal{A} \subset \mathcal{O}, \mathcal{O}open\}$ . How is  $m^{**}$  related to  $m^*$ . They are equal.

Proof. First, we will show  $m^*(A) \leq m^{**}(A)$ . Let  $\mathcal{O}$  be an open set such that  $A \subset \mathcal{O}$ . Any open set can be written as the xxx of disjoint open intervals  $I_j$ . Since  $\mathcal{O}$  is measurable by  $\sigma$ -additivity,  $m(\mathcal{O}) = \sum_{j=1}^{\infty} m(I_j) = \sum_{j=1}^{\infty} \ell(I_j)$ . (Note that  $m^*(\mathcal{O}) = m(\mathcal{O})$ ). Since  $A \subset \mathcal{O} = \bigcup_{j=1}^{\infty} I_j$ , then  $\{I_j\}$  is a covering with open intervals of A, then

$$m^*(A) = \operatorname{glb}\left\{\sum_{k=1}^{\infty} \ell(I_k) | A \subset \bigcup_{k=1}^{\infty} I_k\right\} \le m(\mathcal{O}),$$

so  $m^*(A)$  is a lower bound of  $\{m^*(\mathcal{O})|A \subset \mathcal{O}\}$ , then  $m^*(A) \leq m^{**}(A)$ .

Now we will show  $m^{**}(A) \leq m^*(A)$ . We consider a covering of A with open intervals such that  $\sum_{j=1}^{\infty} \ell(I_j) \leq m^*(A) + \epsilon$ . Now,  $\bigcup_{j=1}^{\infty} I_j = \mathcal{O}$ , an open set, and

$$m^{**}(A) \le m(\mathcal{O}) \le \sum_{j=1}^{\infty} m(I_j),$$

by subadditivity, and

$$\sum_{j=1}^{\infty} m(I_j) = \sum_{j=1}^{\infty} \ell(I_j) \le m^*(A) + \epsilon$$

for an arbitrary  $\epsilon$ . This implies that  $m^{**}(A) \leq m^*(A)$ .

**Problem** (23). For any set A, define  $m^{***}(A) \in [0, \infty]$  by  $m^{***}(A) = lub\{m^*(\mathcal{F}) | \mathcal{F} \subset A, \mathcal{F}closed\}$ . How is  $m^{***}$  related to  $m^*$ .

*Proof.* We will prove that  $m^{***} \leq m^*$ . Since  $\mathcal{F}$  is closed,  $\mathcal{F}$  is measurable. Since  $\mathcal{F} \subset A$ , by monotonicity  $m^*(\mathcal{F}) \leq m^*(A)$ . Then,  $m^*(A)$  is an upper bound of  $m^*(F)$  for all  $F \subset A$ , then  $lub\{m^*(F)\} \leq m^*(A)$ . Then,  $m^{***} \leq m^*$ .

And example where inner measure is strictly less than outer measure is the Vitali set (or, any nonmeasurable set).  $\hfill\square$ 

**Problem** (24). Show that if  $E_1$  and  $E_2$  are measureable then  $m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2)$ .

*Proof.* If  $m(E_1) = \infty$  or  $m(E_2) = \infty$ , then the equality holds. So, assume  $m(E_1)$  and  $m(E_2)$  are finite. We know from set theory that  $E_1 \cup E_2 = E_1 \setminus (E_1 \cap E_2) \cup (E_1 \cap E_2) \cup E_2 \setminus (E_1 \cap E_2)$ . Then,

$$m(E_1 \cup E_2) = m(E_1 \setminus (E_1 \cap E_2)) + m(E_1 \cap E_2) + m(E_2 \setminus (E_1 \cap E_2))$$

and by the excision property,

$$m(E_1 \cup E_2) = m(E_1) - m(E_1 \cap E_2) + m(E_1 \cap E_2) + m(E_2) - m(E_1 \cap E_2)$$
$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2).$$

**Problem** (25). Show that  $m(B_1) < \infty$  is necessary in Theorem 15, part (*ii*), of the theorem regarding continuity of measure.

*Proof.* Proceed by contradiction. Note that  $B_n = [n, \infty)$ ,  $\bigcap_{n=1}^{\infty} B_n = \emptyset$ ,  $m(\emptyset) = 0$ . So consider the measure of each  $B_n$  individually,  $m(B_n) = \infty$ . Then,  $\lim_{n \to \infty} m(B_n) = \infty$ . Contradiction.  $\Box$ 

**Problem** (26). Let  $\{E_k\}_{k=1}^{\infty}$  be a countable disjoint collection of measurable sets. Prove that for any set A,

$$m^*\left(A \cap \bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} m^*(A \cap E_k)$$

*Proof.* We know that for any  $j, E_j \subseteq \bigcup_{j=1}^{\infty} E_j$ . Thus,  $A \cap E_j \subseteq A \cap \bigcup_{j=1}^{\infty} E_j$ . By monotonicity,

$$\sum_{j=1}^{\infty} m^*(A \cap E_j) \le m^* \left( A \cap \bigcup_{j=1}^{\infty} E_j \right).$$

To see the inequality in the other direction, observe that by  $\sigma$ -subadditivity,

$$m^*\left(A\cap\bigcup_{j=1}^{\infty}E_j\right) = m^*\left(\bigcup_{j=1}^{\infty}(A\cap E_j)\right) \le \sum_{j=1}^{\infty}m^*(A\cap E_j)$$

by subadditivity.

**Problem** (27). Let  $\mathcal{M}'$  be any  $\sigma$ -algebra of subsets of  $\mathbb{R}$  and m' a set function on  $\mathcal{M}'$  which takes values in  $[0, \infty]$ , is countably additive, and such that  $m'(\emptyset) = 0$ .

- (i) Show that m' is finitely additive, monotone, countably monotone, and posseses the excision property.
- (ii) Show that m' possesses the same continuity properties as Lebesgue measure.
- *Proof.* (*i*) Finitely additive: Consider disjoint, finite sets  $E_1, E_2, \ldots, E_N, \emptyset, \emptyset, \ldots$  Then, by  $\sigma$ -additivity,

$$m'\left(\bigcup_{j=1}^{N} E_j\right) = \sum_{j=1}^{N} m'(E_j)$$

Monotonicity: Assume  $A \subset B$ . Then,  $B = A \cup B \setminus A$ . By  $\sigma$ -additivity,  $m(B) = m(A) + m(B \setminus A)$ . But,  $m(B \setminus A) \ge 0$ , which implies that  $m(A) \le m(B)$ .

Countable monotonicity: Countable monotonicity states that

$$m(E) = m\left(\bigcup_{j=1}^{\infty} E_j\right) \le \sum_{j=1}^{\infty} m(E_j)$$

where  $\{E_i\}$  is a countable collection of sets in  $\mathcal{M}'$ . We disjoint the sets. Say

$$B_{1} = E_{1}$$

$$B_{2} = E_{2} - B_{1}$$

$$\vdots$$

$$B_{N} = E_{N} - \left(\bigcup_{j=1}^{N-1} B_{j}\right)$$

$$\vdots$$

where  $\bigcup_{j=1}^{\infty} B_j = \bigcup_{j=1}^{\infty} E_j$ . Now, the  $\{B_j\}$  are disjoint by  $\sigma$ -additivity of m':

$$m'\left(\bigcup_{j=1}^{\infty} B_j\right) = \sum_{j=1}^{\infty} m'(B_j) \le \sum_{j=1}^{\infty} m(E_j).$$

Excision property: The excision property states that if  $A \subset B$ , then  $B = A \cup (B \setminus A)$ . Assume  $m'(A) < \infty$ . If  $m'(B) = \infty$ , then  $m'(B \setminus A) = \infty$ . Then since  $m'(B) = m'(A) + m'(B \setminus A)$ ,  $m'(B) - m'(A) = m(B \setminus A)$ . If  $m'(B) < \infty$ , then by subadditivity  $m'(B) = m'(A) + m'(B \setminus A)$ . Then  $m'(B) - m'(A) = m'(B \setminus A)$ .

**Problem** (28). Show that continuity of measure together with finite additivity of measure implies countable additivity of measure ( $\sigma$ -additivity).

*Proof.* Let  $\{E_j\}$  be a disjoint collection of measurable sets. Let  $C_n = \bigcup_{j=1}^N E_j$ , and note that  $C_N \subset C_{N+i}$  (increasing) and  $\bigcup_{N=1}^{\infty} C_N = \bigcup_{j=1}^{\infty} E_j$ . Then, by continuity from below,

$$= m\left(\bigcup_{j=1}^{\infty} E_j\right) = m\left(\bigcup_{N=1}^{\infty} C_N\right) = \lim m(C_N)$$

from which we see that

$$\lim m(C_N) = \lim_{N \to \infty} m\left(\bigcup_{j=1}^N E_j\right) = \lim_{N \to \infty} \sum_{j=1}^N m(E_j) = \sum_{j=1}^N m(E_j).$$

**Problem** (29). • (*i*) Show that rational equivalence defines an equivalence relation on any set.

- $(ii^*)$  Explicitly find a choice set for the rational equivalence relation on  $\mathbb{Q}$ .
- (*iii*) Define two numbers to be irrationally equivalent provided their difference is irrational. Is this an equivalence relation on  $\mathbb{R}$ ? Is this an equivalence relation on  $\mathbb{Q}$ ?
- *Proof.* (i) Consider a set A, where  $x, y \in A$ , and say  $x \sim y$  if x y is rational. We must check that  $\sim$  is reflexive, symmetric, and transitive.
  - Reflexive:  $x x = 0 \in \mathbb{Q}$ .
  - Symmetric: If  $x y = r \in \mathbb{Q}$ , then  $y x = -r \in \mathbb{Q}$ .
  - Transitive: Assume  $x y = r_1 \in \mathbb{Q}$  and  $y z = r_2 \in \mathbb{Q}$ . Then,  $x z = x y + y z = r_1 + r_2 \in \mathbb{Q}$ .
  - $(ii^*)$  As seen in the proof of Theorem 17, the choice set for the rational equivalence relation on  $\mathbb{Q}$  is not measurable. Thus, we cannot explicitly state it. However, we know that two numbers will be in the same equivalence class if they are non-repeating decimals that eventually match up.
  - (*iii*) No. In both  $\mathbb{R}$  or  $\mathbb{Q}$ , this fails to be reflexive.

**Problem** (30). Show that any choice set for the rational equivalence relation on a set of positive outer measure must be uncountably infinite.

*Proof.* Assume to the contrary that there is a choice set for the rational equivalence relation on a set of positive outer measure that is not uncountable. Then, it is either countably infinite or finite. In either case, it is measurable–a contradiction.  $\Box$ 

**Problem** (31). Justify the assertion in the proof of Vitali's Theorem that it suffices to consider the case that E is bounded.

*Proof.* Note that  $E = \bigcup_{n=1}^{\infty} E \cap (-n, n)$ . By the subadditivity of outer measure,

$$0 < m^*(E) = m^*\left(\bigcup_{n=1}^{\infty} E \cap (-n, n)\right) \le \sum_{n=1}^{\infty} m^*(E \cap (-n, n)).$$

Thus, there is an  $n_0$  such that  $m^*(E \cap (-n_0, n_0)) > 0$ . Thus, showing that the bounded set  $E \cap (-n_0, n_0)$  contains a subset that fails to be measurable is sufficient to show that E contains a subset that fails to be measurable.

**Problem** (32). Does Lemma 16 remain true if  $\Lambda$  is allowed to be finite or to be uncountably infinite? Does it remain true if  $\Lambda$  is allowed to be unbounded?

Lemma 16: Let E be a bounded measurable set of real numbers. Suppose there is a bounded countably infinite set of real numbers  $\Lambda$  for which the collection of translates of E,  $\{\lambda + E\}_{\lambda \in \Lambda}$  is disjoint. Then, m(E) = 0.

*Proof.* We know that  $\bigcup_{\lambda \in \Lambda} \lambda + E$  is bounded. Then,  $m\left(\bigcup_{\lambda \in \Lambda} \lambda + E\right) < \infty$ . However,

$$m\left(\bigcup_{\lambda\in\Lambda}\lambda_j+E\right)=\sum_{j=1}^{\infty}m(\lambda_j+E).$$

Since m is translation invariant,

$$m\left(\bigcup_{\lambda\in\Lambda}\lambda_j+E\right)=\sum_{j=1}^{\infty}m(\lambda_j+E)=\sum_{j=1}^{\infty}m(E),$$

which implies that m(E) = 0.

**Problem** (33). Let *E* be a nonmeasurable set of finite outer measure. Show that there is a  $G_{\delta}$  set *G* that contains *E* for which  $m^*(E) = m^*(G)$  while  $m^*(G \setminus E) > 0$ .

## *Proof.* (Alexander's proof)

Note that if  $m^*(E) = m^*(G)$  then  $m^*(G) - m^*(E) = 0$ . So we can restate the problem to want to show that  $m^*(G \setminus E) > m^*(G) - m^*(E)$ . Assume to the contrary that  $m^*(G \setminus E) \le m^*(G) - m^*(E)$ .

Let  $\{I_{k,n} = \{I_{k,n}\}_{k=1}^{\infty}\}_{n=1}^{\infty}$  be a collection of open coverings of E, and let  $I_n = \bigcup_{k=1}^{\infty} I_{k,n}$ . Note that  $m^*(I_n) \leq \sum_{k=1}^{\infty} \ell(I_n) \leq m^*(E) + \epsilon$  for  $\epsilon > 0$ . Now, let  $G = \bigcap_{n=1}^{\infty} I_n$ . Then, G is a  $G_{\delta}$  set and  $E \subseteq G$ . Observe for any n:

$$m(G) \le m^* \left(\bigcap_{n=1}^{\infty} I_n\right) \le m^*(I_n) < m^*(E) + \epsilon$$

and thus  $m^*(G) \leq m^*(E) + \epsilon$ . Finally, observe that

$$m^*(G \setminus E) \le m^*(G) - m^*(E) < \epsilon_{\pm}$$

which implies that E is measurable, a contradiction.

**Problem** (34). Show there is a continuous, strictly increasing function on the interval [0, 1] that maps a set of positive measure onto a set of measure zero.

*Proof.* We consider  $\psi_0 : [0,1] \to [0,1]$  defined as  $\psi_0(x) = \frac{1}{2}\psi = \frac{1}{2}[\phi(x) + x]$ , a function that is continuous and strictly increasing. This function is invertable.

Let  $\psi^{[-1]}(B)$  denote inverse image, and  $\psi^{(-1)}(B)$  denote the inverse function. Since  $\psi$  is one to one, etc, the inverse image and the inverse function are the same. Note that  $[\psi_0^{(-1)}]^{[-1]}(\mathcal{O}) = [\psi_0^{(-1)}]^{(-1)}(\mathcal{O}) = \psi_0(\mathcal{O}).$ 

Note that  $m(\psi_0(c)) = \frac{1}{2}$ . Also note that  $\psi_0^{(-1)}(\psi_0(c)) = c$ . Thus,  $m(\psi_0^{(-1)}(\psi_0(c))) = m(c) = 0$ .

**Problem** (38). Let the function  $f : [a, b] \to \mathbb{R}$  be Lipschitz, that is, there is a constant  $c \ge 0$  such that for all  $u, v \in [a, b]$ ,  $|f(u) - f(v)| \le c|u - v|$ . Show that f maps a set of measure zero onto a set of measure zero. Show that f maps an  $F_{\sigma}$  set onto an  $F_{\sigma}$  set. Conclude that f maps a measurable set to a measurable set.

Proof.

# 2 Chapter 3

**Problem** (1). Suppose f and g are continuous functions on [a, b]. Show that if f = g almost everywhere on [a, b], then, in fact, f = g on [a, b]. Prove that a similar assertion is not true if [a, b] is replaced by a general measurable set E.

*Proof.* Let  $N = \{x \in [a, b] : f(x) \neq g(x)\}$ . Since f = g almost everywhere on [a, b], m(N) = 0.

Let  $x \in N$  and  $n \in \mathbb{N}$ , and consider a sequence of intervals  $I_n = (x - \frac{1}{n}, x + \frac{1}{n})$ , together with  $(a, a + \frac{1}{n})$  and  $(b - \frac{1}{n}, b)$ . Note that each  $I_n$  has positive outer measure, and when n is large enough,  $I_n \cap A \neq \emptyset$  and  $I_n \cap N = \{x\}$ . Consider a sequence  $x_n \in I_n$ . Then, when n is large enough,  $x_n \notin N, x_n \in A$ , and  $\lim x_n = x$ . Since  $f(x_n) = g(x_n)$ ,

$$f(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = g(x).$$

Now, consider two functions f and g with domains in  $\mathbb{Z}$  defined by f(x) = 1 and g(x) = 0 for all  $x \in \mathbb{Z}$ . Then, since  $m(\mathbb{Z}) = 0$ , f = g almost everywhere on  $\mathbb{Z}$ . However, f and g certainly are not equal. Thus, the assertion does not hold for all sets.

**Problem** (2). Let D and E be measurable sets and f a function with domain  $D \cup E$ . We proved that f is measurable on  $D \cup E$  if and only if its restrictions to D and E are measurable. Show that the same is not true if "measurable" is replaced by "continuous."

*Proof.* Consider a function f, defined by

$$f(x) = \begin{cases} 0 & \text{if } x \in [0, 1] \\ 1 & \text{if } x \in (1, 2] \end{cases}$$

Note that f is continuous on [0,1] and f is continuous on (1,2]. However, f is discontinuous at x = 1 on [0,2].

**Problem** (3). Suppose a function f has a measurable domain and is continuous except at a finite number of points. Prove that f is measurable.

*Proof.* Let  $B = \{x : f(x) \text{ is not continuous}\}$ . Since B is finite, f is measurable on B and m(B) = 0. Consider  $A = E \setminus B$ . Since f is continuous on A and A is measurable, by Proposition 3, f is measurable on A. Thus f is measurable on  $A \cup B = (E \setminus B) \cup B = E$ .

**Problem** (4). Suppose f is a real-valued function on  $\mathbb{R}$  such that  $f^{-1}(c)$  is measurable for each number c. Show that f is not necessarily measurable.

*Proof.* Let W be the Vitali set. Let f be a function on W defined by f(x) = x. Then,  $f^{-1}(x) = x$  is measurable. However, the domain W is not measurable, and thus f is not measurable.

**Problem** (5). Suppose the function f is defined on a measurable set E and has the property that  $\{x \in E : f(x) > c\}$  is measurable for each rational number c. Prove that f is measurable.

*Proof.* (Method I-Gatto) Let  $c \in \mathbb{Q}$  and  $r \in \mathbb{R}$ . Note that

$$\{x:f(x)>r\}=\bigcup_{c>r}\{x:f(x)>c\}$$

Since the right hand side is a union of measurable sets, the union is measurable. Thus, the left hand side is measurable. Therefore, f is measurable.

*Proof.* (Method II-Christina and Steve)

Let  $r \in \mathbb{R}$ , and let  $c_n$  be a sequence of rational numbers such that  $c_n \to r$ . Then,

$$\{x \in E : f(x) > r\} = \bigcup_{n=1}^{\infty} \{x \in E : f(x) > c_n\}$$

and measurability of the right side implies measurability of the left side. Thus, f is measurable.  $\Box$ 

**Problem** (6). Let f be a function with measurable domain D. Show that f is measurable if and only if the function g defined on  $\mathbb{R}$  by g(x) = f(x) for  $x \in D$  and g(x) = 0 for  $x \notin D$  is measurable.

*Proof.* (Method I-Christina) " $\Rightarrow$ " Let f be measurable on D, and let g be defined by

$$g(x) = \begin{cases} f(x) & \text{if } x \in D\\ 0 & \text{if } x \notin D \end{cases}$$

Then, g is measurable on D and. Consider g on  $\mathbb{R} \setminus D$ .

- If  $a \ge 0$ , then  $\{x \in \mathbb{R} \setminus D : g(x) > a\} = \emptyset$ , which is measurable
- If a < 0, then  $\{x \in \mathbb{R} \setminus D : g(x) > a\} = \mathbb{R} \setminus D$ , which is measurable

Thus, g is measurable on  $\mathbb{R} \setminus D$ . Therefore, g is measurable on  $\mathbb{R} = (\mathbb{R} \setminus D) \cup D$ .

" $\Leftarrow$ " Assume g is measurable on  $\mathbb{R}$ . Then, g is measurable on  $D \subset \mathbb{R}$ . Since g = f on D, this is equivalent to stating that f is measurable on D.

Proof. (Method II-Gatto) Since f is measurable, note that for  $\alpha \ge 0$ ,

$$\{x \in D : f(x) > \alpha\} = \{x : g(x) > \alpha\},\$$

and for  $\alpha < 0$ ,

$$\{x: g(x) > \alpha\} = \{x \in D: f(x) > \alpha\} \cup \{\mathbb{R} \setminus D\}$$

all of which are measurable sets, and thus g is measurable on its domain.

Conversely, if g is measurable, the same equalities above hold, and thus f is measurable.  $\Box$ 

**Problem** (7). Let the function f be defined on a measurable set E. Show that f is measurable if and only if for each Borel set A,  $f^{-1}(A)$  is measurable.

Proof. " $\Rightarrow$ " Consider  $\mathcal{A}$ , the  $\sigma$ -algebra with the property that  $f^{-1}(U)$  is measurable for each  $U \in \mathcal{A}$ . By Proposition 2, since f is measurable,  $f^{-1}(\mathcal{O})$  is measurable for every open set  $\mathcal{O}$ . Thus,  $\mathcal{O} \in \mathcal{A}$  for every open set  $\mathcal{O}$ . Therefore, Borel sets lie in  $\mathcal{A}$ .

"  $\Leftarrow$  " Assume that for every Borel set A,  $f^{-1}(A)$  is measurable. Since Borel sets contain every open set, by Proposition 2, f is measurable.

Problem (8).

Proof.

**Problem** (9). Let  $\{f_n\}$  be a sequence of measurable functions defined on a measurable set E. Define  $E_0$  to be the set of points  $x \in E$  at which  $\{f_n(x)\}$  converges. Prove that  $E_0$  is measurable.

Proof.

**Problem** (10). Suppose f and g are real-valued functions defined on all of  $\mathbb{R}$ , f is measurable, and g is continuous. Show that the composition  $f \circ g$  is not necessarily measurable.

*Proof.* Let  $f = \chi_E$  and  $W = \psi(E)$ , where  $g = \psi^{-1}$ , the Cantor-Lebesgue function defined in Proposition 21 of chapter 2. The function  $\psi^{-1}$  is continuous and therefore is measurable. Compute:

$$(f \circ g)^{-1}(1) = g^{-1}(f^{-1}(1)) = g^{-1}(E) = \psi(E) = W$$

but, by Propisition 21 of Chapter 2, W is a non-measurable set.

**Problem** (11). Let f be measurable and g one-to-one from  $\mathbb{R}$  onto  $\mathbb{R}$  which has a Lipschitz inverse. Show that the composition  $f \circ g$  is measurable.

### Proof.

**Problem** (12). Let f be a bounded measurable function on E. Show that there are sequences of simple functions on E,  $\{\phi_n\}$  and  $\{\psi_n\}$ , such that  $\{\phi_n\}$  is decreasing and each of these sequences converges to f uniformly on E.

## *Proof.* (Christina's proof)

Let n > 0. Then, by the Simple Approximation Lemma, for each n > 0 there are simple functions  $\phi_{\frac{1}{n}}$  and  $\psi_{\frac{1}{n}}$  such that  $\phi_{\frac{1}{n}} \leq f \leq \psi_{\frac{1}{n}}$  and  $\psi_{\frac{1}{n}} - \phi_{\frac{1}{n}} < \frac{1}{n}$  on E. Next, let

$$\phi_{\frac{1}{n}}' = \max_{k > n} \left\{ \phi_{\frac{1}{n}} \right\}$$

and

$$\psi_{\frac{1}{n}}' = \max_{k>n} \left\{ \psi_{\frac{1}{n}} \right\}.$$

Observe that  $\phi'_{\frac{1}{n}}$  increases, while  $\psi'_{\frac{1}{n}}$  decreases. Furthermore, observe that

$$\frac{1}{n} > f - \phi_{\frac{1}{n}} \ge f - \phi'_{\frac{1}{n}}$$

and

$$\frac{1}{n} > \psi_{\frac{1}{n}} - f \ge \psi'_{\frac{1}{n}} - f$$

and thus

and

$$\lim_{n \to \infty} \psi'_{\frac{1}{n}} - f < \frac{1}{n}$$

 $\lim_{n \to \infty} f - \phi'_{\frac{1}{n}} < \frac{1}{n}$ 

independently of x, and thus the sequences  $\left\{\psi'_{\frac{1}{n}}\right\}$  and  $\left\{\phi'_{\frac{1}{n}}\right\}$  converge to f uniformly.

**Problem** (13). A real-valued measurable function is said to be semisimple provided it takes only a countable number of values. Let f be any measurable function on E. Show that there is a sequence of semisimple functions  $\{f_n\}$  on E that converges to f uniformly on E.

*Proof.* (Christina's proof)

Let f be a measurable function on E. Consider a set  $E_j$  for every integer j, where  $E_j = \left\{x \in E : \frac{j-1}{n} \leq f(x) < \frac{j}{n}\right\}$ . Then, define a function

$$f_n = \sum_{j \in \mathbb{Z}} \frac{j}{n} \chi_{E_j}.$$

Since  $\mathbb{Z}$  is countable,  $f_n$  is a semisimple function. Consider the sequence of functions  $\{f_n\}$  and let  $\epsilon > 0$ . Then, there is an  $N \in \mathbb{N}$  such that  $\frac{1}{N} < \epsilon$ . Take n > N. Then,

$$|f - f_n| < \frac{1}{n} \le \frac{1}{N} < \epsilon$$

and thus  $\{f_n\}$  converges uniformly to f.

*Proof.* (Alexander's proof)

Divide the real line into subintervals of length  $2^{-n}$  as follows: let  $I_k = \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right)$  for  $k \in \mathbb{Z}$ . Now, let  $E_k = f^{-1}(I_k)$ , and let

$$f_n = \sum_{k=1}^{\infty} \frac{k-1}{2^n} \chi_{E_k}$$

Note that  $f_n$  is semisimple. Furthermore, note that as  $n \to \infty$ ,  $f_n \to f$  uniformly, since for all n > N,  $|f - f_n| < \frac{1}{2^n} < \epsilon$ .

**Problem** (14). Let f be a measurable function that is finite a.e. on E and  $m(E) < \infty$ . For each  $\epsilon > 0$ , show that there is a measurable set F contained in E such that f is bounded on F and  $m(E \setminus F) < \epsilon$ .

*Proof.* Remember that  $f = f^+ + f^-$ . First, consider  $f^+$ . Let  $N = \{x \in E : f(x) = +\infty\}$ , and note that m(N) = 0. Consider  $E_n = \{x \in E : |f(x)| > n\}$ . Then,

$$\bigcap_{n=1}^{\infty} E_n = N.$$

Note that  $m(N) = \lim_{n=1}^{\infty} m(E_n) = \lim_{n=1}^{\infty} m(\{x \in E : |f(x)| > n\}) = 0$ . Then, given any  $\epsilon > 0$ , there is a set such that  $m(E_n) < \epsilon$ .

Define a set  $F_n = \{x \in E : |f(x)| \le n\} = E_n^c$ . Then,  $F_n$  is bounded, and

$$m(E \setminus F_n) = m(F_n^c) = m(E_n) < \epsilon.$$

Proceed similarly to see that the inequality holds for  $f^-$ .

**Problem** (15). Let f be a measurable function on E that is finite a.e. on E and  $m(E) < \infty$ . Show that for each  $\epsilon > 0$ , there is a measurable set F contained in E and a sequence  $\{\phi_n\}$  of simple functions on E such that  $\{\phi_n\} \to f$  uniformly on F and  $m(E \setminus F) < \epsilon$ .

Proof. Define  $F_n$  the same as in the previous problem,  $F_n = \{x \in E : |f(x)| \le n\}$ . Then, as seen in the previous exercise,  $m(E \setminus F_n) < \epsilon$  for any given  $\epsilon$  whenever  $n > N_{\epsilon}$ . Furthermore, by exercise 12 in this section, since f is bounded on F there is a sequence  $\{\phi_n\}$  of simple functions on E such that  $\{\phi_n\} \to f$ .

**Problem** (16). Let *I* be a closed, bounded interval and *E* a measurable subset of *I*. Let  $\epsilon > 0$ . Show that there is a step function *h* on *I* and a measurable subset *F* of *I* for which

$$h = \chi_E$$
 on F and  $m(I \setminus F) < \epsilon$ .

*Proof.* Without loss of generality, Let  $E \subseteq [0,1] = I$ . Let  $\mathcal{O} = \{\mathcal{O}_j\}_{j=1}^{\infty}$  be an open disjoint covering of E such that  $\sum_{j=1}^{\infty} \ell(\mathcal{O}_j) \leq m(E) + \frac{\epsilon}{2}$ . Let  $F = [0,1] \setminus (\mathcal{O} \setminus E)$ . Since F is a collection of intervals, F is a measurable subset of [0,1]. Furthermore,  $I = F \cup (\mathcal{O} \setminus E)$ , thus

$$m(I) = m(F \cup (\mathcal{O} \setminus E))$$
$$m(I) = m(F) + m(\mathcal{O} \setminus E)$$
$$m(I) - m(F) = m(\mathcal{O} \setminus E) < \epsilon$$

and thus  $m(I \setminus F) < \epsilon$ .

**Problem** (17). Let *I* be a closed, bounded interval and  $\psi$  a simple function defined on *I*. Let  $\epsilon > 0$ . Show that there is a step function *h* on *I* and a measurable subset *F* of *I* for which

$$h = \psi$$
 and  $m(I \setminus F) < \epsilon$ .

*Proof.* (Warning: this proof is from Gatto's notes and is not clear) By number 16, there is a step function  $h_i(x)$  such that  $h_i(x) = \chi_{E_i}(x)$  except on a set  $B_i = I \setminus F_n$ , where  $m(B_i) < \frac{\epsilon}{N}$ .

Note that  $F_n = [0,1] \setminus ((\mathcal{O} \setminus E) \cup (E \setminus \mathcal{O}))$ Let  $h = \sum_{i=1}^N a_i h_i(x) = \sum_{i=1}^N a_i \chi_{E_i}(x)$  except at  $B = \bigcup_{i=1}^N B_i$  but  $m(B) \leq \sum_{i=1}^N m(B_i) < \epsilon$ . Note that  $F = I \setminus B$ , then  $I \setminus F = I \cap ((I \cap B)^C)^C = I \cap (I^C \cap B) = I \cap B = B$ . Finally,  $m(I \setminus F) = m(B) \leq \epsilon$ .

**Problem** (18). Let *I* be a closed, bounded interval and *f* a bounded measurable function defined on *I*. Let  $\epsilon > 0$ . Show that there is a step function *h* on *I* and a measurable subset *F* of *I* for which

$$|h-f| < \epsilon$$
 on F and  $m(I \setminus F) < \epsilon$ .

Proof.

**Problem** (19). Show that the sum and product of two simple functions are simple, as are the max and the min.

*Proof.* (Christina's proof) Let  $\phi(x)$  and  $\psi(x)$  be simple functions on E. Then,

$$\phi(x) = \sum_{k=1}^{n} a_k \chi_{E_k}, \text{ where } E_k = \{x \in E : \phi(x) = a_k\}$$
$$\psi(x) = \sum_{j=1}^{m} b_j \chi_{A_j}, \text{ where } A_j = \{x \in E : \psi(x) = b_j\}$$

Next, define new sets  $B_{p,q} = E_p \cap A_q$  and  $c_{p,q} = a_p + b_q$ . Then,

$$\phi(x) + \psi(x) = \sum_{j,k=1}^{p,q} a_j b_k \chi_{B_{jk}}$$

The max and min of two different simple functions must be simple, since they still will be taking only a finite number of values.  $\hfill \Box$ 

**Problem** (20). Let A and B be any two sets. Show that

$$\chi_{A\cap B} = \chi_A \cdot \chi_B$$
  
$$\chi_{A\cup B} = \chi_A + \chi_B - \chi_A \cdot \chi_B$$
  
$$\chi_{A^C} = 1 - \chi_A.$$

*Proof.* (Alexander) Note that

$$\chi_A = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} \quad \text{and } \chi_A = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

and thus

$$\chi_A \chi_B = \begin{cases} 1 & \text{if } x \in A \text{ and } x \in B \\ 0 & \text{if } x \notin A \text{ and } x \in B \\ 0 & \text{if } x \notin A \text{ and } x \notin B \\ 0 & \text{if } x \notin A \text{ and } x \notin B \end{cases}$$

/

Or, more simply,  $\chi_A \chi_B = \chi_{A \cap B}$ . The other two properties follow similarly.

**Problem** (21). For a sequence  $\{f_n\}$  of measurable functions with common domain E, show that each of the following functions is measurable:

$$\inf\{f_n\}, \sup\{f_n\}, \liminf\{f_n\}, \limsup\{f_n\}$$

*Proof.* (Alexander's proof) Note that for every  $c \in \mathbb{R}$ ,

$$\inf\{f_n\} = \{x \in E : \inf\{f_n\} \le c\} = \bigcup_{n=1}^{\infty} \{x \in E : f_n(x) \le c\}$$
$$\sup\{f_n\} = \{x \in C : \sup\{f_n\} \ge c\} = \bigcap_{n=1}^{\infty} \{x \in E : f_n(x) \ge c\}$$

The elements on the far right side of the equations are all measurable, and unions of measurable sets are measurable, thus the inf and sup are measurable. Furthermore, observe that

$$\lim_{n \to \infty} \inf\{f_n\} = \sup_n \inf_{k \ge n} \{f_k\}$$
$$\lim_{n \to \infty} \sup\{f_n\} = \inf_n \sup_{k > n} \{f_k\}$$

and thus the lim sup and lim inf are measurable.

**Problem** (22). Let  $\{f_n\}$  be an increasing sequence of continuous functions on [a, b] which converges pointwise on [a, b] to the continuous function f on [a, b]. Show that the convergence is uniform on [a, b].

*Proof.* (Proof by Christina, Jamie, Alexander)

Let  $\epsilon > 0$ , and define  $E_n = \{x \in [a,b] : f(x) - f_n(x) < \epsilon\}$ . We want  $E_n$  to be open, so note that  $f - f_n(x)$  is continuous and thus  $E_n$  is open relative to [a,b].

Since  $f_n \to f$  pointwise, then there is an  $N \in \mathbb{N}$  such that for all n > N,  $|f(x) - f_n(x)| < \epsilon$ . Let  $n_0 > N$ , and consider  $x \in E_{n_0}$ . Then,  $x \in \bigcup_{n=1}^{\infty} E_n$ . Thus,  $[a, b] \subseteq \bigcup_{n=1}^{\infty} E_n$ . In other words,  $\{E_n\}$  is an open covering of [a, b].

Since  $\{E_n\}$  is an open covering of [a, b] and since [a, b] is compact, by Heine-Borel there is a finite subcovering of [a, b]. Denote this subcovering  $\{E_{n_1}, E_{n_2}, \ldots, E_{n_k}\}$ . Let  $N_0 = \max\{n_1, n_2, \ldots, n_k\}$ . Let  $n \ge N_0$  and  $x \in [a, b] \subseteq E_{n_1} \cup E_{n_2} \cup \cdots \cup E_{n_k}$ . Thus,  $x \in E_{n_i}$  for some *i*. However,  $n > N_0 > n_i$ , and  $f_n$  converges pointwise, thus

$$|f(x) - f_n(x)| < |f(x) - f_{n_i}(x)| < \epsilon$$

and thus we have uniform convergence.

**Problem** (23). Express a measurable function as the difference of nonnegative measurable functions and thereby prove the general Simple Approximation Theorem based on the special case of a nonnegative measurable function.

*Proof.* Remember that  $f = f^+ - f^-$ , where  $f^+ = \{\max\{f(x), 0\}\}$  and  $f^- = \{\max\{-f(x), 0\}\}$ . Both  $f^+$  and  $f^-$  are measurable and thus we have satisfied all of the needed contditions.

**Problem** (24). Let *I* be an interval and  $f: I \to \mathbb{R}$  be increasing. Show that *f* is measurable by first showing that, for each number *n*, the strictly increasing function  $x \mapsto f(x) + \frac{x}{n}$  is measurable, and then taking pointwise limits.

#### *Proof.* (Christina)

Note that there is an  $x_0$  such that  $f(x_0) + \frac{x_0}{n} > \alpha$  since f is increasing. Then,  $(x_0, b] \subseteq \{x \in I : f(x) + \frac{x}{n} > \alpha\}$ , and thus  $f(x) + \frac{x}{n}$  is measurable on its domain. Therefore, we will consider the sequence functions  $f_n = f(x) + \frac{x}{n}$ . Then,  $f_n \to f$ , and all  $f_n$  are measurable, thus f is measurable by proposition 9.

#### 3 Chapter 4

**Problem** (9). Let E have measure zero. Show that if f is a bounded function on E, then f is measurable and  $\int_E f = 0$ .

*Proof.* Let f be a function, and consider the set  $\{x \in E : f(x) > \alpha\}$ , where  $\alpha \in \mathbb{R}$ . But,  $\{x \in E : f(x) > \alpha\} \subset E$ . So, by monototonicity,  $m\{x \in E : f(x) > \alpha\} \leq m(E) = 0$ .

Now, consider a simple function  $\psi$  on E such that:

$$\int_E f = \inf_{f \le \psi} \int_E \psi$$

Any simple function  $\psi = \sum_{i=1}^{n} a_i \chi_{E_i}$  on E means  $E_i \subset E$  and thus  $\int_E \psi = 0$ . Thus,

$$\int_E f = \inf_{f \le \psi} \int_E \psi = 0.$$

**Problem** (10). Let f be a bounded measurable function on a set of finite measure E. For a measurable subset A of E, show that  $\int_A f = \int_E f \cdot \chi_A$ .

*Proof.* Observe that  $\int_E f\chi_A = \int_{E\setminus A} f\chi_A + \int_A f\chi_A$ . Note that  $\int_{E\setminus A} f\chi_A = 0$ , since  $\chi$  is zero in  $A^c$ . (This is because for any  $Y, -\frac{1}{n}\chi_Y \leq 0 \leq \frac{1}{n}\chi_Y$ , thus  $\int -\frac{1}{n}\chi_Y \leq \int 0 \leq \int \frac{1}{n}\chi_Y$ ). All together, we see that

$$\int_{E} f\chi_{A} = \int_{E \setminus A} f\chi_{A} + \int_{A} f\chi_{A} = \int_{A} f\chi_{A} = \int_{A} f$$

**Problem** (11). Show that the Bounded Convergence Theorem does not hold for the Riemann integral.

*Proof.* Consider an enumeration of  $\mathbb{Q} = \{r_n\}_{n=1}^{\infty}$  in [0, 1], and define

$$f_R(x) = \begin{cases} 1 & \text{if } x = r_i, 1 \le i \le k \\ 0 & \text{when } x \text{ is odd} \end{cases}$$

And note that

$$\lim_{k \to \infty} f_R(x) = f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ 0 & when x \notin \mathbb{Q} \cap [0, 1] \end{cases}$$

Now consider the Riemann upper sum. Note that any Riemann upper sum is 1, ie, U(f, P) = 1, and any lower sum is zero, ie, L(f, P) = 0. Thus,  $R \int f$  does not exist, since the infimum of upper sums and supremum of lower sums are not equal. 

**Problem** (12). Let f be a bounded measurable function on a set of finite measure E. Assume q is bounded and f = q a.e. on E.

*Proof.* Let  $N = \{x \in E : f(x) \neq g(x)\}$ . Note that m(N) = 0. Now, observe that

$$\int_{E} = \int_{E \setminus N} f - \int_{N} f = \int_{E \setminus N} g(x) dx + \int_{N} g(x) dx = \int_{E} g dx$$

since an integral over a set of measure zero is zero.

**Problem** (13). Show that the Bounded Convergence Theorem does not hold if  $m(E) < \infty$  but we drop the assumption that the sequence  $\{|f_n|\}$  is uniformly bounded on E.

*Proof.* Let

$$f_n(x) = \begin{cases} 2n^2x & \text{if } x \in \left[0, \frac{1}{2n}\right) \\ -2n^2x + 2n & x \in \left[\frac{1}{2n}, \frac{1}{n}\right) \\ 0 & \text{if } x \in \left[\frac{1}{n}, 1\right) \end{cases}$$

More simply, this is a function with a peak of width  $\frac{1}{n}$  and height n at  $\frac{1}{2n}$ . For example, consider the following graphs generated by Wolfram Alpha.



Computing the integral by area of triangles, we see that  $\int_0^1 f_n = \frac{1}{2} \frac{1}{n}n = \frac{1}{2}$ . Note, however, that  $\lim_{n \to \infty} f_n(x) = 0$ 

for all 
$$x \in [0, 1]$$
. So,  $\int_0^1 f_n = \frac{1}{2}$ , but  $\int_0^1 f = \int_0^1 0 = 0$ .

**Problem** (14). Show that Proposition 8 is a special case of the Bounded Convergence Theorem.

**Theorem.** (Bounded Convergence Theorem) Let  $\{f_n\}$  be a sequence of measurable functions on a set of finite measure E. Suppose  $\{f_n\}$  is uniformly pointwise bounded on E, that is, there is a number  $M \ge 0$  for which

$$|f_n| \leq M$$
 on  $E$  for all  $n$ .

Then,

If 
$$\{f_n\} \to f$$
 pointwise on  $E$ , then  $\lim_{n \to \infty} \int_E f_n = \int_E f$ .

*Proof.* Assume that  $f_n(x) \to f(x)$  uniformly. Say that  $|f_N(x)| < B$  for all x. Uniform convergence states that  $|f_n(x) - f(x)| < \epsilon$  for all n > N. Thus,  $|f_N(x) - f(x)| < \epsilon$ , and thus

$$\epsilon < f(x) - f_N(x) < \epsilon$$
  
 $f_N(x) - \epsilon < f(x) < f_N(x) + \epsilon$ 

and thus  $|f(x)| < B + \epsilon$ . Now, observe

$$|f_n - f + f - f_N| < 2\epsilon$$

by the triangle inequality, and thus

$$-2\epsilon < f_n(x) - f_N(x) < 2\epsilon$$

for all n > N and thus  $|f_n| \le B + 2\epsilon$  and thus the Bounded Convergence Theorem applies.  $\Box$ 

### **Problem** (15). Skip

*Proof.* Check continuity theorems of measure.

**Problem** (16). Let f be a nonnegative bounded measurable function on a set of finite measure E. Assume  $\int_E f = 0$ . Show that f = 0 a.e. on E.

Proof. It suffices to show that  $m(\{x \in E : f(x) > \frac{1}{n}\}) = 0$  for all  $n \in \mathbb{N}$ , because  $m(\{x : f(x) > 0\}) = \bigcup_{\frac{1}{n} > 0} \{f(x) > \frac{1}{n}\}$ . Consider

$$\begin{aligned} \frac{1}{n} \chi_{\{x \in E: f(x) > \frac{1}{n}\}} &\leq f(x) \chi_{\{x \in E: f(x) > \frac{1}{n}\}} \\ \int_{E} \frac{1}{n} \chi_{\{x \in E: f(x) > \frac{1}{n}\}} &\leq \int_{E} f(x) \chi_{\{x \in E: f(x) > \frac{1}{n}\}} = \int_{\{x \in E: f(x) > \frac{1}{n}\}} f(x) dx \\ \int_{E} f(x) &\geq \int_{E \setminus A} f \end{aligned}$$

because

**Problem** (17). Let E be a set of measure zero and define  $f = \infty$  on E. Show that  $\int_E f = 0$ .

*Proof.* (Alexander's proof) Define a function g on  $\mathbb{R}$  by

$$g = \begin{cases} f & \text{if } x \in E \\ 0 & \text{if } x \in E^C \end{cases}$$

Since g is 0 a.e. on  $\mathbb{R}$ , by Proposition 9,  $\int_{\mathbb{R}} g = 0$ . Then,

$$0 = \int_{\mathbb{R}} g = \int_{E} g + \int_{E^{C}} g = \int_{E} f + \int_{E^{C}} 0 = \int_{E} f + 0 = \int_{E} f.$$

*Proof.* (Gatto's Proof) Note that f vanishes outside a set of finite measure. Thus,

$$\int_E f = \sup_{0 \le h \le f} \int_E h$$

where h is bounded on E and vanishes outside of a set of finite measure. Note that since h is bounded, then  $0 \le h < M$  for some M. Thus,

$$\int_E h \le \int_E M = M \cdot m(E) = 0.$$

**Problem** (18). Show that the integral of a bounded measurable function of finite support is properly defined.

*Proof.* (Alexander's proof)

We want to show that, even if  $m(E) = \infty$ , defining the integral over E by

$$\int_E f = \int_{E_0} f$$

where  $E_0$  has finite measure and f = 0 on  $E \setminus E_0$ , then this integral is properly defined. Note that by Proposition 9,  $\int_{E \setminus E_0} f = 0$ . Thus,

$$\int_{E} f = \int_{E \setminus E_0} f + \int_{E_0} f = 0 + \int_{E_0} f = \int_{E_0} f.$$

**Problem** (19). For a number  $\alpha$ , define

$$f(x) = \begin{cases} x^{\alpha} & \text{if } 0 < x \le 1\\ 0 & \text{if } x = 0 \end{cases}$$

Compute  $\int_0^1 f$ .

Proof. (Dr Gatto)

Begin with the case  $\alpha < -1$ . Apply the monotone convergence theorem. Define:

$$f_n = \begin{cases} x^{\alpha}, \text{ if } \frac{1}{n} \le x \le 1\\ 0, \text{if } 0 \le x \le \frac{1}{n} \end{cases}$$

Note that  $\int x^{\alpha} = \lim \int f_n = \lim \frac{x^{\alpha+1}}{\alpha+1} \Big|_{\frac{1}{n}}^1 \to \infty$ 

If  $\alpha = -1$ , then

$$\int_0^1 x^\alpha = \lim_{n \to \infty} \int_{1/n}^1 f_n = \lim_{n \to \infty} \ln n \Big|_{1/n}^1 \to \infty$$

If  $-1 < \alpha$ , then

$$\int_{0}^{1} x^{\alpha} = \lim_{n \to \infty} \int_{1/n}^{1} x^{\alpha} = \lim_{n \to \infty} \frac{x^{\alpha+1}}{\alpha+1} \Big|_{1/n}^{1} = \frac{1}{\alpha+1} > 0$$

**Problem** (20). Let  $\{f_n\}$  be a sequence of non-negative measurable functions that converges to f pointwise on E. Let  $M \ge 0$  such that  $\int_E f_n \le M$  for all n. Show that  $\int_E f \le M$ . Verify that this property is equivalent to the statement of Fatou's lemma.

*Proof.* (Alexander's proof)

By the definition of pointwise convergence,  $\lim_{n\to\infty} f_n(x) = f(x)$  for all  $x \in E$ . Then, we know  $\int \lim_{n\to\infty} f_n(x) = \int f(x)$ . Since this sequence of integrable functions converges pointwise everywhere on E to f,

$$\int_{E} f(x) = \int_{E} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \int_{E} f_n(x) \le M.$$

Now we want to show that this property is equivalent to the statement of Fatou's lemma. Dr. Gatto says not to worry about this direction.  $\hfill \Box$ 

*Proof.* (Dr. Gatto)

Apply Fatou's Lemma and the Monotone Convergence Theorem to see that

$$\int_{E} f = \int_{E} \lim_{n \to \infty} f_n \le \liminf_{n \to \infty} \int_{E} f_n \le M$$

Conversely, to get Fatou... skip this portion.

**Problem** (21). Let the function f be nonnegative and integrable over E and  $\epsilon > 0$ . Show there is a simple function  $\eta$  on E that has finite support,  $0 \le \eta \le f$  on E and  $\int_E |f - \eta| < \epsilon$ . If E is a closed, bounded interval show there is a step function h on E that has finite support and  $\int_E |f-h| < \epsilon$ .

Proof. (WARNING: WHAT FOLLOWS IS A MESS. I RECOMMEND AGAINST READING IT. DR GATTO SPENT AN HOUR ON THIS PROOF AND EVERYTHING WAS HORRIBLE) Let  $h_n = \min\{n, f(x)\}$ . Then, the  $h_n$  are increasing, and since f is finite almost everywhere,  $\lim_{n\to\infty} h_n = f(x)$  a.e. By monotone convergence,

$$\lim_{n \to \infty} \int h_n = \int f$$

which is equivalent to saying

$$\lim_{n \to \infty} \int f - h_n = 0$$

Thus, given  $\frac{\epsilon}{2}$ , there is an  $N_0$  such that  $\int f - h_{N_0} < \frac{\epsilon}{2}$ . Since  $h_n$  is bounded and vanishes outside E, there is a sequence a sequence  $\phi_{\epsilon}$  of simple functions, where  $0 \leq \phi_{\epsilon} \leq h_n$ , such that  $|h_n(x) - \phi_{\epsilon}(x)| < 0$  $\begin{array}{c} \frac{\epsilon}{2m(E)}. \\ \text{Let } \eta = \phi_{\epsilon}. \text{ Then,} \end{array}$ 

$$|f - \eta| = |f - h_{N_0} + h_{N_0} - \eta| \le |f - h_{N_0}| + |h_{N_0} - \eta|$$

and integrating we see that

$$\int |f - \eta| = \int |f - h_{N_0} + h_{N_0} - \eta| \le \int |f - h_{N_0}| + \int |h_{N_0} - \eta| \le \frac{\epsilon}{2} + \frac{\epsilon}{2m(E)}m(E) = \epsilon.$$

Now, I = E, where E is a closed, bounded interval. Then, there is a step function g such that  $g = \eta$  except on  $I \setminus F$ , where  $m(I \setminus F) < \frac{\epsilon}{2L}$ . Now, since  $\eta \leq N_0$  and  $g \leq N_0$ ,

$$\begin{split} \int_E |f-g| &\leq \int_E |f-\eta| + \int_E |\eta-g| \leq \frac{\epsilon}{2} \\ &\leq \int_E |f-\eta| + \int_{I \setminus F} |\eta-g| + \int_F |\eta-g| \\ &= \int_E |f-\eta| + \int_{I \setminus F} |\eta-g| \\ &\leq \epsilon \end{split}$$

Let  $\eta = \sum a_i \chi_{E_i}$ , where  $hj - \chi_{E_i}$  approximates each characteristic, but  $h \leq 1$ , except  $I \setminus F$ ,  $m(I \setminus F) \leq \frac{\epsilon}{3\ell}.$ 

We will approximate everything by doing the following:  $L = \sum_{i=1}^{\ell} |a_i|$ , so  $a_j h_j = a_j \chi_{E_i}$ . So,  $\sum a_j h_j \leq L$  and  $\sum a_j \chi_{E_j} \leq L$ .

Everything in this writeup is wrong. Get notes from Christina.

**Problem** (22). Let  $\{f_n\}$  be a sequence of non-negative measurable functions on  $\mathbb{R}$  that converges pointwise on  $\mathbb{R}$  to f and f be integrable over  $\mathbb{R}$ . Show that if

$$\int_{\mathbb{R}} f = \lim_{n \to \infty} \int_{\mathbb{R}} f_n, \text{ then } \int_E f = \lim_{n \to \infty} \int_E f_n \text{ for any measurable set } E$$

*Proof.* Since  $f_n$  are nonnegative, we apply Fatou. We know that

$$\int_E f \le \liminf \int_E f_n.$$

The same is true for the complement:

$$\begin{split} \int_{\mathbb{R}} f - \int_{E} f &= \int_{\mathbb{R} \setminus E} f \\ &\leq \liminf \int_{\mathbb{R} \setminus E} f_{n} \\ &\leq \liminf \left( \int_{\mathbb{R}} f_{n} - \int_{E} f_{n} \right) \\ &\leq \int_{\mathbb{R}} f - \limsup \int_{E} f_{n} \end{split}$$

Therefore,

$$\limsup_{n \to \infty} \int_E f_n \le \int_E f$$

Combining all of this information, we observe that

$$\int_{E} f \le \liminf \int_{E} f_n \le \limsup_{n \to \infty} \int_{E} f_n \le \int_{E} f$$
$$\int_{E} f = \lim_{n \to \infty} \int_{E} f_n.$$

and thus

**Problem** (23). Let  $\{a_n\}$  be a sequence of non-negative real numbers. Define the functions f on  $E = [1, \infty)$  by setting  $f(x) = a_n$  if  $n \le x < n+1$ . Show that  $\int_E f = \sum_{n=1}^{\infty} a_n$ .

*Proof.* In order to apply the Monotone Convergence Theorem, we construct the following sequence of partial sums:

$$S_j = \begin{cases} f(x), & \text{if } 1 \le x < j \\ 0, & \text{if } x \ge j \end{cases}$$

Then,  $S_j$  is an increasing sequence of functions that converges pointwise to f. Therefore, we can apply the Monotone Convergence Theorem. Also note that

$$\int_{E} S_j = \int_{[1,j)} S_j + \int_{[j,\infty)} S_J = \int_{[1,j)} S_j = \sum_{n=1}^{j} a_n \cdot m\left([n,n+1)\right) = \sum_{n=1}^{j} a_n$$

Combining all of this information together, we see that

$$\int_E f = \lim_{j \to \infty} \int_E S_j = \lim_{j \to \infty} \sum_{n=1}^j a_n = \sum_{n=1}^\infty a_n.$$

**Problem** (24). Let f be a non-negative measurable function on E.

- 1. Show there is an increasing sequence  $\{\phi_n\}$  of non-negative simple functions on E, each of finite support, which converges pointwise on E to f.
- 2. Show that  $\int_E f = \sup \{ \int_E \phi : \phi \text{ simple, of finite support, and } 0 \le \phi \le f \text{ on } E \}.$

Proof. 1. Define

$$E_{j,k} = \left\{ x : \frac{1}{2^k} (j-1) \le f(x) < \frac{1}{2^k} j \right\}, \text{ where } 1 \le j \le 4^k, \text{ and}$$
$$E_k^* = \left\{ x : f(x) > 2^k \right\}$$

Use this to construct a sequence  $\phi_k$ , where

$$\phi_k = \sum_{j=1}^{4^k} \frac{1}{2^k} (j-1)\chi_{E_{j,k}} + 2^k \chi_{E_k^*}$$

This is an increasing sequence of non-negative simple functions on E which converges pointwise to f. To ensure finite support, take

$$\psi_k = \chi_{[-k,k]} \cdot \phi_k.$$

2. Since  $\{\phi_k\}$  are increasing, we will apply the Monotone Convergence Theorem:

$$\int_E f = \lim_{k \to \infty} \int_E \phi_k \le \sup_{\phi \le f} \int_E \phi$$

Furthermore, since  $f \ge \phi \ge 0$ ,

$$\int_E f \ge \sup_{\phi \le f} \int_E \phi$$

and therefore

$$\int_E f = \sup_{\phi \le f} \int_E \phi.$$

**Problem** (25). Let  $\{f_n\}$  be a sequence of nonnegative measurable functions on E that converges pointwise on E to f. Suppose  $f_n \leq f$  on E for each n. Show that

$$\lim_{n \to \infty} \int_E f_n = \int_E f$$

*Proof.* (Liz's proof)

By Fatou's lemma,  $\int_E f \leq \liminf_{n \to \infty} \int_E f_n$ . On the other hand, since  $f_n \leq f$  for each n, then  $\limsup_{n \to \infty} \int_E f_n \leq \int_E f$ . Then,  $\int_E f = \int_E f_n$ .  $\lim_{n\to\infty} \int_E f_n$ .

*Proof.* (Gatto's proof) Take  $g_k(x) = \inf_{n \ge k} \{f_n(x)\}, \lim g_k(x) = f(x)$ . Then, by Fatou,

$$\int_E f \le \liminf \int f_k$$

Next, consider  $f - f_n \to 0$  a.e. Also,  $f_n \leq f$  and thus  $f - f_n$  is positive, so we can use Fatou again. Then,

$$\int 0 \le \lim_{n \to \infty} \inf \int (f - f_n)$$

and thus

$$0 \le \int f - \lim_{n \to \infty} \sup \int f_n$$

 $\int f \ge \lim_{n \to \infty} \sup \int f_n.$ 

implying that

**Problem** (26). Show that the Monotone Convergence Theorem may not hold for decreasing sequences of functions.

*Proof.* (\*\*\*\*ON TEST PROBABLY\*\*\*\*)

Consider a set  $E = [1, \infty)$ , and define a sequence  $f_n = \chi_{[n,\infty)}$ . Observe that  $\int_E f_n = \int_E \chi_{[n,\infty)} = \infty$ . On the other hand,  $\int_E f = \int_E \lim_{n \to \infty} \chi_{[n,\infty)} = \int_E 0 = 0$ .

**Problem** (27). Prove the following generalization of Fatou's Lemma: If  $\{f_n\}$  is a sequence of nonnegative measurable functions on E, then

$$\int_E \liminf f_n \le \liminf \int_E f_n.$$

Proof. (Gatto's Proof) Take  $g_k(x) = \inf_{n \ge k} \{f_n\}$ . Now,

$$\lim_{k \to \infty} g_k(x) = g(x) = \lim_{n \to \infty} \inf\{f_n(x)\}$$

so we can apply Fatou.

$$\int \lim g_k \le \lim_{k \to \infty} \inf \int g_k \le \liminf \int f_k$$
$$\int \liminf \{f_k\} \le \liminf \int f_k.$$

and thus